
Arboretum: Using a precision grammar for grammar checking in CALL

Emily M. Bender†, Dan Flickinger∗, Stephan Oepen‡∗,
Annemarie Walsh†, and Timothy Baldwin∗

∗Stanford University †University of Washington ‡Universitetet i Oslo
Stanford, CA 94305 (USA) Seattle WA 98195 (USA) 0317 Oslo (Norway)

{danf |oe |tbaldwin}@csli.stanford.edu {ebender |awalsh}@u.washington.edu

Abstract
We present a tutorial system for language learn-
ers, using a computational grammar augmented
with mal-rules for analysis, error diagnosis, and
semantics-centered generation of corrected forms.
Corrections are produced using a novel strategy of
aligned generation.

1 Introduction
Developing fluency in a second language requires exten-
sive practice, using the language in conversation, mak-
ing mistakes and getting feedback on how to do better.
In a classroom setting, this feedback can be quite direct,
but necessarily limited in quantity, so most practice takes
place outside the classroom where feedback is often less
clear. Students of the language could thus benefit from
a conversational partner with infinite patience, a precise
mastery of the rules of the language, and the ability to
gather the intent of students’ error-prone utterances.

In this project, we have adapted the English Resource
Grammar (ERG: Flickinger (2000)) and the LKB parser
and generator (Copestake, 2002) into a prototype of an
NLP engine for interactive grammar checking, robust for
interpreting input, but precise when doing analysis and
responding to the student. The ERG is a broad-coverage
precision grammar for English. It compositionally re-
lates semantic representations to surface strings, and as
such, is suitable for both parsing and generation. The
LKB includes an efficient Lisp-based parser and gen-
erator which interpret typed-feature structure grammars
such as the ERG. Based on this technology, we have built
a prototype system called Arboretum which is capable of
producing well-formed semantic representations for ill-
formed (erroneous) input, diagnosing the nature of the
errors, and providing corrected forms. Crucially, in pro-
ducing the corrected forms, the generator will not make
spurious “corrections” of other parts of the input which
may confuse the learner.

In the Arboretum system, we have augmented the ex-
isting ERG with mal-rules (Schneider and McCoy, 1998)
to handle specific kinds of mal-formed input. These mal-
rules serve to relate the erroneous input to well-formed
semantic representations. We can then both generate
from the well-formed semantic representations (with the
mal-rules turned off) to produce corrected forms and di-
agnose the nature of the error based on the mal-rules
which were used in the parse. To minimize spurious
“corrections”, we have modified the LKB chart generator

so its search is guided by the input parse where possible.
In this paper we describe the mal-rules strategy and

the types of mal-rules we encountered (§2) and the im-
plementation of aligned generation as a kind of best-first
generation (§3). We then evaluate the usefulness of the
mal-rules strategy against the range and frequency of er-
ror types in an error-tagged learner corpus (SST: Izumi
et al. (2003)) (§4) and evaluate the effectiveness of the
aligned-generation strategy based on a sample of the cor-
pus. Finally, in§6, we consider how the error detection
problem can be addressed using existing stochastic parse
selection techniques without requiring training treebanks
of learner English.

2 Mal-rules: Types and Examples
Our goal in this project is to map ill-formed surface
strings to well-formed semantic representations. Doing
this leaves the grammar checking system ready to be em-
bedded in an interactive dialogue system which can en-
gage the language learner’s interest and provide motiva-
tion and opportunities for the learner to practice.

In developing the prototype, we found that the mal-
rules required fell into three classes:

• Syntactic constructions which parallel existing syn-
tactic constructions but are subject to a different set
of constraints (e.g., a rule which allows for deter-
minerless NPs based on singular count nouns, rather
than plural or mass nouns).

• Lexical rules which parallel existing lexical rules
but match the wrong orthographic change to a given
morphosyntactic effect (e.g., a rule which produces
verb forms likechasesmorphosyntactically marked
for non third singular agreement)

• Lexical items inheriting from a lexical type already
in the grammar, but incorrect (in native speaker En-
glish) for the word in question (e.g., the use ofallow
in *we allow to travel, c.f.,we allow traveling).

For the evaluation described in§4 below, we merely
added 4 syntactic construction mal-rules, 6 lexical mal-
rules and 21 mal-lexical entries to the grammar, as well
as 25 supporting mal-types (see examples in§3). In
doing so, we strove to ensure that the additions to the
grammar inherited any information they share with the
standard rules they shadow from a common supertype,
so that as the coverage of the core grammar is extended

and improved the mal-components remain functional and
benefit from the extensions.

All of the mal-rules and mal-entries are flagged with
a feature so that they can be selectively applied (for ex-
ample, in parsing but not in generation) and so that the
grammar-checking algorithm can discover where in the
parse tree a mal-rule has been used. The latter is the key
to error diagnosis.

3 Aligned Generation
The fact that our mal-rules map from ill-formed strings
to well-formed semantic representations forms the basis
of our solution to two of the problems outlined in§1: the
understanding problem and the correction problem. On
the first front, it brings our treatment of ill-formed input
in line with our treatment of well-formed input, giving
both consistent semantic representations which are suit-
able for further processing by a natural language under-
standing/dialogue system. On the second front, having
normalized semantic representations allows us to simply
generate from these and produce well-formed strings, es-
sentially treating this as a machine translation problem.

However, the process of generating the corrected
forms is complicated by the fact that there is ambiguity
in generation as well as in parsing, i.e., multiple ways
of expressing the same semantic concept. While one
could conceivably pick the most probable of the gener-
ated forms based on some corpus of native speaker in-
put, that strategy is not appropriate for this task: the
corrected form should match the input in all ways ex-
cept those affected by the correction, lest the learner be
misled into thinking that they had also made an error
with respect to one of the points of linguistic variation
which leads to generator ambiguity (e.g., adverb place-
ment, that-deletion, topicalization, alternative spellings
of lexical items).

In order to address this concern, we developed a strat-
egy for best-first generation which we call ‘aligned gen-
eration’. In aligned generation, the goal is to generate
the sentence which most closely matches some reference
sentence in structure and lexical yield. If all of the ref-
erence sentences were well-formed, this would be trivial
(one could in fact return the input string). In our case,
however, the sentences which are well-formed according
to the grammar used to parse (with mal-rules) will not be
well-formed according to the grammar used to generate
(without mal-rules), and so the problem becomes to find
the closest match given that not all of the components of
the input sentence are available.1

We implemented aligned generation in terms of a scor-
ing strategy which assigns priorities to generation tasks
in the LKB’s agenda-driven chart generator (Carroll et
al., 1999). The modified generator assigns one of four

1We believe there are other possible applications of this strategy, as
in dialogue systems where the computer’s turns can be made tosound
more natural by matching as closely as possible the user’s turns.

possible priorities to a given task, arranged highest to
lowest as follows:

• Highest: For edges licensed by lexical entries, the
same lexical item was used in the reference parse.
Else, the edge (active or passive) to be built by the
task corresponds to a configuration found in the ref-
erence parse. In this context, a configuration is a
subtree (incomplete in the case of active edges) with
rule identifiers as labels on the nodes.

• The edge (active or passive) to be built by the task
is licensed by the same rule and will have the same
lexical yield as some edge in the reference parse.

• The rule to be used in the task is used somewhere in
the reference parse.

• Lowest: All other tasks.

The generator is working bottom-up, instantiating lex-
ical entries based on the semantics given as input, and
then building larger phrases over those lexical entries us-
ing lexical rules and phrase structure rules. At any given
point, there are several tasks which can be undertaken,
and the point of the strategies listed above is to guide
the choices of the generator among the tasks so that the
first complete tree it finds (covering the semantics of the
input) is the closest one to the reference parse.

The first strategy considers local subtrees of depth
one: either terminal nodes (lexical entries) or mother-
daughter(s) configurations. If a lexical entry was used
in the reference parse and is available to the generator it
should be considered. In the case of non-terminal nodes,
a task which corresponds to a subtree (partial or com-
plete) is to be preferred if it matches a subtree found in
the reference parse. This ‘match’ is calculated in terms
of the rule and lexical entry identifiers (rather than partic-
ular features of the signs involved such as are represented
in the syntactic category abbreviations N, NP, etc).2

However, in many cases the presence of mal-rules
in the parse will lead to local subtrees which cannot
be matched by the generator. For example, the analy-
sis of Dogs barksinvolves a lexical mal-rule for verbs
which gives the formbarks non-third-singular agree-
ment. Thus the configuration corresponding to the top-
most local subtree (S over NP and VP) has the daughters
BARE NP3 and MAL NON THIRD SG FIN VERB, while
the corresponding subtree that the generator will try
to produce will have the daughtersBARE NP and
NON THIRD SG FIN VERB. In order to assign some pri-
ority to this configuration, we apply the second strategy,
which values it because it has the same mother (SUBJH)
and the same lexical yield (DOG N1 andBARK V1) as
the configuration in the reference parse.

2Neither strategy is absolute: It is possible for the generator to pro-
pose a local subtree at one point which happens to match a local subtree
from elsewhere in the reference parse.

3Daughters are identified by the rule that licensed them. ERG rule
names are cited in small caps.

The final strategy applies when neither the proposed
daughters nor the lexical yield are found with the pro-
posed mother in the tree. For example, the ill-formed
sentencedog the cat chasesis assigned the structure
shown below. We correct this sentence toA/the dog

S

NP

N

dog

S/NP

NP

DET

the

N

cat

VP/NP

V/NP

chases

the cat chases, crucially leaving the topicalization even
though it is in general dispreferred. When the genera-
tor considers the task of building the topmost subtree li-
censed by the ruleFILLHEAD NON WH with daughters
licensed by the rulesHSPECandSUBJH, this configura-
tion is not found in the reference parse, as the left-hand
daughter was instead built withBARE NP SG. Further-
more, FILLHEAD NON WH is not found with the same
lexical yield in the reference parse as the corrected string
has an additional determiner (‘a/the’). Thus the third
strategy assigns some priority (lower than the first two
but still higher than other tasks) to this task since the rule
used in the task is indeed found in the reference parse.

As discussed further in§5, there is still room for fur-
ther refinements to this list of strategies. In particular, we
do not yet use head-lexicalization in matching configu-
rations, nor account for the ordering of modifiers (e.g.,
from The big red barking dog finally leftwe can generate
The red big barking dog finally left). Here, we believe
that heuristics based on the order of lexical items rather
than on tree configurations will be more effective.

4 Evaluation of Mal-rules Strategy
Matthews (1993) and Menzel and Schroeder (1999) ar-
gue that adding mal-rules to a precision grammar is an
ineffective way to approach the problem of grammar
checking for CALL, because the range of learner errors
is too broad, making it infeasible to anticipate every pos-
sible error combination. They advocate instead the more
widely-used technique of developing algorithms for re-
laxing constraints in the grammar until a parse is found
(see also Granger et al. (2001), Heinicke et al. (1998),
Khader (2003) and Vandeventer (2001)). While a mal-
rules approach will never be fully robust, we believe that
it is nonetheless interesting, for two reasons: (i) The
increased precision afforded by adding particular mal-
rules rather than removing constraints on existing rules
increases the utility of the grammar as a component of a
dialogue-based language tutoring system. (ii) Construct-
ing a system which can accurately and helpfully diagnose
some common errors already benefits language learners.

Indeed, there are error types such as word choice in both
closed class cases such asa v. the and open class cases
such as (1) which we believe are in principle beyond the
scope of either a mal-rules or a constraint-relaxation ap-
proach. Characteristically, these errors involve sentences
which are grammatical but not ‘idiomatic’. From the lan-
guage learner’s point of view, however, the error types
are not necessarily distinct.

(1) Because, you know, yesterday was Valentine’s Day,
and I had atime(corr: date) with my girlfriend.

Therefore, the question is not whether the mal-rules
strategy scales up to complete coverage, but whether it
scales up to covering a high enough proportion of error
tokens to be helpful to the language learner.

The most common error type in the SST corpus is
determiner errors (27%), and two of the three subtypes
of this error (extraneous determiner and missing de-
terminer) are plausibly handled by a the mal-rules ap-
proach. Similarly, the noun number errors and many of
the verb tense errors (8.1% and 8.8%) are within reach.
11 of the 15 next most common types involve lexical
choice, but the other four (verb agreement 3.7%, ver-
bal complements 3%, missing auxiliaries 1.5% and verb
form errors 1.2%) are manageable.

5 Evaluation of Aligned Generation
We evaluated the effectiveness of the aligned generation
strategy by randomly selecting a sample of 221 items
from the SST corpus, representing the error types we at-
tempt to handle in our prototype and balanced to reflect
the proportion of those errors over the whole corpus, in-
cluding both single-error and multiple-error sentences.

Of the 221 items, we were able to parse 195. Hand-
inspection of the parses indicated that 178 items were
assigned a correct parse. Thus for 80.5% of the sam-
ple, the parses assigned by the grammar (including mal-
components) included an appropriate one. We tree-
banked those successful parses to serve as input for gen-
eration. The generator was able to produce a string for
167 of its input items, or 93.8%. On the remaining
items, either the input semantics was incompatible with
the grammar without mal-components4 or the generator
ran out of edges before finding a string.

The 167 items we were able to generate for can be
broken down according to whether or not they required
any change (no change was required if the string was in
fact grammatical, if perhaps infelicitous in context, or the
error was one we cannot catch, despite being classified
in the corpus as the same type as others which we can)
and whether or not the current system generated multiple
strings for the item. These results are shown in Table 1.

4E.g., extraneous determiners, the mal-rule for which creates a se-
mantic representation which needs further correction before it can be
well-formed. We anticipate handling such cases by proposing a ‘trans-
fer’ component which operates on the semantic representations.

Strings generated
1 > 1 total

correction yes 74 70 144
needed no 13 10 23

total 87 80 167

Table 1: Generation by ambiguity & need for correction

Where there was no correction needed (i.e., the mal-
rules didn’t fire), we returned the input string in all but
four cases. All four cases (two ambiguous, two not) in-
volved the generator systematically not producing the
correct output because it currently won’t generate con-
tracted forms or discourse particles.

Of the 74 cases where some correction was needed
(i.e., a mal-rule fired) and the generator found only one
string, 10 had a spurious change in addition to the re-
quired change. Seven of these are related again to con-
traction and discourse particles, one to a misapplied mal-
rule, and three others to an apparent treebanking error.

Finally, of the 70 cases where mal-rules fired and there
was a choice of output for the generator, 22 cases showed
spurious changes. 12 of these involved failure of the
aligned generation strategies (sometimes in combination
with grammar or generator failures). In the other 10
cases, the generator was unable to supply a string with-
out spurious changes. One of these had to do with the
generator not producing certain forms (e.g., contractions,
discourse particles). The remainder were effectively tree-
banking errors: either the wrong parse was chosen, or all
of the parses should have been rejected.

The aligned generation failures fell into two main
classes: failure to distinguish between lexical entries and
failure to distinguish between phrasal tasks (largely in-
volving adjunct placement). Both of these failures can
be potentially addressed by more sophisticated propaga-
tion of edge priorities. In the current system, the priority
of an edge is independent of the priorities of its daugh-
ters. Since all lexical entries are retrieved and all lexical
rules are applied before any phrase structure rules are at-
tempted, lexical priorities are effectively lost, and phrasal
priorities can get masked in sufficiently large structures.

Despite these drawbacks, aligned generation is per-
forming well above baseline. Our sample included 60
examples requiring corrections and involving ambiguity
where the generator was able to return a correct string. A
baseline strategy of choosing randomly among these al-
ternatives would be expected to produce the right string
(i.e., a string without spurious corrections, assuming that
there is only one such per generated set) 34% of the time.
Aligned generation did so 80% of the time.

6 Conclusion and Future Work
Our semantics-centered approach to the analysis and
correction of errors produced by language learners en-
ables our prototype implementation of a tutorial system

to present corrected utterances with high precision, and
pointed us to next steps in this research, especially the
task of choosing correctly among several alternatives.

The problem of error detection in this framework is
closely related to a problem of parse selection, since
parses for a string with and without mal-rules will be
competing. Current state-of-the-art techniques for parse
selection with unification-based grammars involve train-
ing statistical models over annotated corpora (see e.g.,
Oepen et al. (2002)). We expect to take advantage of
this technology without needing a treebank of learner
English, because our system produces normalized se-
mantic representations. We will train a semantics-based
parse selection model on an existing native-speaker cor-
pus, and use it for parse selection on learner English.

Acknowledgments
This work was supported by a generous research grant from

MediaX at Stanford University.

References
John Carroll, Ann Copestake, Daniel Flickinger, and Victor

Poznanski. 1999. An efficient chart generator for (semi-)-
lexicalist grammars. InProc. of the 7th European Workshop
on Natural Language Generation, pages 86 – 95, Toulouse.

Ann Copestake. 2002.Implementing Typed Feature Structure
Grammars. CSLI Publications, Stanford, CA.

Dan Flickinger. 2000. On building a more efficient grammar
by exploiting types.Natural Language Engineering, 6 (1)
(Special Issue on Efficient Processing with HPSG):15–28.

Sylviane Granger, Anne Vandeventer, and Marie Jose Hamel.
2001. Analyse des corpus dapprenants pour lelao bas sur le
tal, linguistique de corpus.TAL, 42 (2):609–621.

Johannes Heinicke, Jurgen Kunze, Wolfgang Menzel, and
I. Schroder. 1998. Eliminative parsing with graded con-
straints. InProc. Coling-ACL’98, pages 526 – 30, Montreal.

Emi Izumi, Toyomi Saiga, Thepchai Supnithi, Kiyotaka Uchi-
moto, and Hitoshi Isahara. 2003. The development of the
spoken corpus of japanese learner english and the applica-
tions in collaboration with nlp techniques. InProceedings
of Corpus Linguistics 2003 Conference, pages 359 – 366.

Isa Khader. 2003. Evaluation of an English LFG-based gram-
mar as error checker. Master’s thesis, University of Manch-
ester Institute of Science and Technology.

Clive Matthews. 1993. Grammar frameworks in intelligent
CALL. CALICO, 11 (1):5–27.

Wolfgang Menzel and Inge Schroeder. 1999. Error diagnosis
for language learning systems.Special edition of the Re-
CALL journal, pages 20–30.

Stephan Oepen, Kristina Toutanova, Stuart Shieber, Chris Man-
ning, Dan Flickinger, and Thorsten Brants. 2002. The
LinGO Redwoods treebank. Motivation and preliminary ap-
plications. InProceedings of the 19th International Confer-
ence on Computational Linguistics, Taipei, Taiwan.

David Schneider and Kathleen McCoy. 1998. Recognizing
syntactic errors in the writing of second language learners.
In Proc. of Coling-ACL’98, pages 1198 – 1204, Montreal.

Anne Vandeventer. 2001. Creating a grammar checker for call
by constraint relaxation: a feasibility study.ReCALL, 13
(1):110–120.

