From Database to Treebank: Enhancing a Hypertext Grammar with Grammar Engineering

Emily M. Bender
University of Washington

Conference on Electronic Grammaticography
University of Hawai‘i
13 February 2011
Introduction: Grammatical Descriptions and Implemented Grammars

- Good (2004) conceptualizes a descriptive grammar (GD) as a set of annotations over texts and lexicon.

- Annotations take the form of prose descriptions or structured descriptions.

- Annotations are illustrated with exemplars drawn from the text but are understood to express generalizations over more examples.

- Implemented grammars can be understood as machine-readable structured descriptions.

- Those descriptions must be integrated with each other to form a cohesive whole.

- Implemented grammars can automatically produce annotations over individual examples, which can be aggregated and searched.
Overview

• Introduction

• Implemented Grammars and Treebanks

• Values and Maxims

• Getting There

• Virtuous Cycles and the Montage Vision
In pictures: Grammatical Descriptions (Good 2004)
In pictures: Implemented Grammars

Implemented analyses and computational lexicon

Texts

Parsing

Treebanking

Searchable structured annotations over utterances
The Big Picture

Lexicon

Grammatical description (human readable)

Texts

Implemented grammar (machine readable)

Exemplar selection

Exemplar selection

Parse structures for each utterance
The Big Picture

Lexicon

Exemplar selection

Grammatical description (human readable)

Exemplar selection

Texts

Parse structures for each utterance

Implemented grammar (machine readable)

Inform
The Big Picture

Lexicon ➔ Exemplar selection ➔ Grammatical description (human readable) ➔ Exemplar selection ➔ Texts ➔ Parse structures for each utterance ➔ Implemented grammar (machine readable)

Treebank search

Inform
Overview

• Introduction

• Implemented Grammars and Treebanks

• Values and Maxims

• Getting There

• Virtuous Cycles and the Montage Vision
Implemented Grammars

• Comprised of sets of mutually consistent rules and lexical entries

• Make analyses precise enough for a computer to handle them

• Are necessarily *formalized* but are not typically *formalist*

• Currently most developed for syntax, morphology, phonology
Example Grammar: HPSG Grammar of Wambaya (Bender 2008, 2010)

• Based on Nordlinger 1998

• Developed on the basis of the LinGO Grammar Matrix (Bender et al 2002, 2010)
Definition of a grammar rule

wmb-head-2nd-comp-phrase := non-1st-comp-phrase &
[SYNSEM.LOCAL.CAT.VAL.COMPS [FIRST #firstcomp,
 REST [FIRST [OPT +,
 INST +,
 LOCAL #local,
 NON-LOCAL #non-local],
 REST #othercomps]],
HEAD-DTR.SYNSEM.LOCAL.CAT.VAL.COMPS [FIRST #firstcomp,
 REST [FIRST #synsem &
 [INST -,
 LOCAL #local,
 NON-LOCAL #non-local],
 REST #othercomps]],
NON-HEAD-DTR.SYNSEM #synsem].

Inspecting a Grammar Rule
A Grammar Rule in Action
Treebanks

- Old-style (e.g., Penn Treebank, Marcus et al 1993): Develop extensive code book and hand-annotate tree structures for each item.

- New-style (e.g., Redwoods, Oepen et al 2004):
 - Process all items (typically utterances or sentences) with grammar
 - Select intended structure from among those provided by the grammar for each item --- assisted by calculation of discriminants
 - Indicate items with no correct analysis
 - Save decisions to rerun when grammar is updated

- Internally consistent treebanks, which can be updated easily as grammar is improved.
Redwoods Treebanking Tool
Redwoods Treebanking Tool
What Are Treebanks Good For?

- In Computational Linguistics:
 - Training parse-ranking models and other applications of machine learning

- In Language Description:
 - a set of searchable annotations
 - more detailed than IGT
 - more easily kept internally consistent than IGT
 - ... by no means a replacement for IGT!
Treebank Search (Ghodke and Bird 2010)

- Fast queries over large treebanks, including both PTB-style and Redwoods-style

- Sample query over Wambaya data:

 - Find sentences with a complement realized only by a modifier:

    ```
    //DECL[//HEAD-COMP-MOD-2 AND NOT //HEAD-COMP-2
    AND NOT //COMP-HEAD-2]
    ```

 - Find sentences with two overt arguments:

    ```
    //DECL[//J-STRUCT-TRANS-VERB-LEX AND
    //HEAD-COMP-2 AND //HEAD-SUBJ]
    ```
Overview

• Introduction

• Implemented Grammars and Treebanks

• Values and Maxims

• Getting There

• Virtuous Cycles and the Montage Vision
Values and Maxims

- The treebanking methodology advocated here speaks to many of these values and associated maxims.
Values and Maxims: Data Quality

- ACCOUNTABILITY: More sources for a phenomenon are better than fewer sources. (Rice 2006:395; Noonan 2006:355; Nordhoff 2008:299)
 - Treebank search helps GD readers turn up examples from texts

- ACTUALITY: A GD should incorporate provisions to incorporate scientific progress. (Nordhoff 2008:299)
 - The Redwoods methodology for producing dynamic treebanks ensures that the treebank can always be easily updated when the implemented grammar is.

- HISTORY: The GD should present both historical and contemporary analyses. (Noonan 2006:360; Nordhoff 2008:300)
 - The same software that supports treebanking allows for detailed comparisons between treebanks based on different grammar versions.
Values and Maxims: Exploration

- INDIVIDUAL READING HABITS: A GD should permit the reader to follow his or her own path to explore it. (Nordhoff 2008:303)

- Major contrast here is form-based versus function-based. In principle, implemented grammars can be used in parsing (string to semantics) and generation (semantics to string)

- EASE OF EXHAUSTIVE PERCEPTION: The readers should be able to know that they have read every page of the grammar. (Nordhoff 2008:305)

- Problematic for implemented grammars
Values and Maxims: Exploration

- RELATIVE IMPORTANCE: The relative importance of a phenomenon for (a) the language and (b) language typology should be retrievable (Zaefferer 1998c:2; Noonan 2006:355; Nordhoff 2008:306).
 - For a language: Can measure how frequently the constraints associated with that phenomenon appear in the treebank and/or how many grammar components mention them.
 - For typology: Cross-linguistic comparison facilitated by code sharing across implemented grammars.

- QUALITY ASSESSMENT: The quality of a linguistic description should be indicated. (Nordhoff 2008:306)
 - Treebank search can quantify number of examples involving a phenomenon; can be used to estimate coverage of analyses over texts.
Values and Maxims: Exploration

• MULTILINGUALIZATION: A GD should be available in several languages, among others the language of wider communication of the region where the language is spoken (Weber 2006a:433; Nordhoff 2008:307).

 • Implemented grammars can be used in machine translation. Small MT systems could provide an interesting means of exploration, and one that is fairly easily adapted for different input languages.

• MANIPULATION: The data presented in a GD should be easy to extract and manipulate (Nordhoff 2008:307).

 • Implemented grammars can be used for interactive parsing and generation.
Overview

- Introduction
- Implemented Grammars and Treebanks
- Values and Maxims
- Getting There
- Virtuous Cycles and the Montage Vision
Getting There: Isn’t that too much work?

- The original field and descriptive work is the hard part; grammar engineering effort is small in comparison:
 - Bender’s (2008) grammar of Wambaya built in 210 hours, or 1/20th the time of the original fieldwork by Nordlinger.
 - 91% treebanked coverage of 804 exemplars in Nordlinger 1998, and 76% treebanked coverage on (short) held-out narrative text.

- Potential for collaboration: field linguist and grammar engineer don’t have to be the same person

- Even a grammar with partial coverage can be interesting

- The Grammar Matrix provides a head-start (next slide)
The Grammar Matrix:
http://www.delph-in.net/matrix

- A repository of implemented analyses, including:

 - A core grammar with analyses of general patterns such as semantic compositionality

 - "Libraries" of analyses of cross-linguistically variable phenomena

 - Accessible via a web-based questionnaire

 - Produces working HPSG grammars from typological descriptions
Overview

• Introduction

• Implemented Grammars and Treebanks

• Values and Maxims

• Getting There

• Virtuous Cycles and the Montage Vision
Virtuous Cycles and the Montage Vision

• Wambaya experiment involved “post-hoc” grammar engineering

• The process of implemented grammar development always raises questions about the language (no GD is complete)

• Current project: Working on Chintang, in collaboration with Balthasar Bickel et al, who are still actively working with the speaker community

• While a considerable amount of data collection and analysis has to take place before grammar engineering can get off the ground, there is potential for a feedback loop that speeds up (and strengthens) descriptive work.
Montage

- The Montage project (Bender et al 2004) envisioned a software environment which integrated tools for production of IGT, GDs, and implemented grammars.

- The IGT and GD would inform the implemented grammar, and even possibly be input to a system that could automatically create it.

- The implemented grammar would feed into IGT and GD development by finding candidate exemplars of each phenomenon.

- Montage was never funded but nonetheless there is progress in the direction of this vision.
Montage: potential components

• Collaborative annotation and GD development environments, including TypeCraft (Beermann & Mihaylov 2009), GALOES (Nordhoff 2007, 2011), and Digital Grammar (Drude 2011).

• The Grammar Matrix customization system (Bender et al 2010)

• Treebank Search (Godhke & Bird 2010)

• Machine learning algorithms that learn typological properties from IGT (e.g., Lewis & Xia 2008)
Conclusions

• Treebanks can complement other kinds of annotations included in electronic grammatical descriptions.

• Technological and methodological advances (including the Grammar Matrix) greatly reduce the cost of producing treebanks.

• The process of creating a treebank can serve to inform and clarify grammatical descriptions.