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1 Introduction

In this paper, I argue that the tools and techniques of grammar engineering provide a
means to take the development and evaluation of syntactic hypothesis testing to a new
level. Grammar engineering is the process of creating machine-readable implementations of
formal grammars. Traditionally, linguistic hypotheses are encoded as statements within a
grammatical theory and tested by collecting relevant examples and manually verifying that
the grammars correctly predict the grammaticality and linguistic structure of those examples.
Computerized implementations of their grammars allow linguists to more efficiently and
effectively test hypotheses, for two reasons: First, languages are made up of many subsystems
with complex interactions. Linguists generally focus on just one subsystem at a time, yet the
predictions of any particular analysis cannot be calculated independently of the interacting
subsystems. With implemented grammars, the computer can track the effects of all aspects
of the implementation while the linguist focuses on developing just one. Second, automated
application of grammars to test suites and naturally occurring data allows for much more
thorough testing of linguistic analyses—against thousands as opposed to tens of examples
and including examples not anticipated by the linguist.

This work is situated within the Montagovian tradition of the “method of fragments”
(Montague, 1974, Partee, 1979, Gazdar et al., 1985). In this methodology, theoretical ideas
are validated (and extended) through the development of explicit grammars which can relate
strings from some fragment of the language under study to semantic representations. This
is useful because, as Partee puts it, “otherwise it is extremely easy to think that you have a
solution to a problem when in fact you don’t.” (1979:95) In the remainder of this section, I
provide some further background on why this is the case, working from three observations.

Observation 1: There is no ultimate answer to the ultimate question of syntax,
phonology and morphology.1

Despite this, much work in theoretical and computational linguistics seems focused on
finding simple, elegant answers which, even if they don’t explain the whole language, nonethe-
less have far-reaching consequences. This search is not entirely without fruit: Important

1Not even 42. For discussion, see Adams, 1979.
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big-picture results in computational linguistics can change the way we approach certain
tasks (e.g., the application of the noisy-channel model to machine translation (Brown et al.,
1993)). In theoretical linguistics, analyses (or reanalyses) of particular phenomena can mo-
tivate the development of new formal theories (Bresnan, 1978, Gazdar, 1981). And yet, it
is a mistake to focus only on such big picture results. Practical working systems as well as
thorough scientific analysis both require attention to the details of language. The strong per-
formance of NLP systems typically depends on language-specific parameter-tuning and/or
rich linguistic annotation of training data, though these aspects are usually de-emphasized
in presentations of such work. At the same time, there exists no formal grammar that ap-
proaches comprehensive description of a language.2 The field of documentary and descriptive
linguistics provides an exception to the general trend, reflecting an interest in whole-picture
descriptions of languages, including as many details of as many subsystems as possible.

Observations 2: “. . . que chaque langage forme un système où tout se tient”
(. . . that each language forms a system where everything hangs together)3

For the structuralists, this dictum was meant to indicate that the structure of language—
the object of study of grammarians—is all in the contrasts. From the point of view of
generative grammar, this observation can be taken to mean that all of the parts of the
system (phonology, morphology, syntax, semantics, etc.) and all of the subparts (e.g., case,
agreement, word-order) have to work together in the production and interpretation of ev-
ery utterance. As as consequence, it is not possible to test a syntactic hypothesis in one
subdomain without simultaneously building a model of many intersecting subdomains. Fur-
thermore, it is not possible to test a syntactic hypothesis without considering a wide variety
of sufficiently complex sentences, to illustrate the interaction of subdomains.

Observation 3: Explanatory adequacy depends on descriptive adequacy.

A grammar is descriptively adequate if it accepts (and assigns the correct structure to)
the right set of strings (Chomsky, 1965). However, the same set of strings (or string-meaning
pairs) can be described by many different grammars.4 Thus, according to Chomsky’s 1965
definitions of the terms, to have ‘explanatory adequacy’ a theory of grammar must provide a
way to choose among grammars describing the same string set only on the basis of the data
that a human language learner would be exposed to.

Much work in theoretical linguistics has thus focused on trying to achieve explanatory
adequacy, unfortunately at the expense of the logically prior descriptive adequacy. No matter
how interesting or elegant the analysis, it remains a conjecture unless its descriptive adequacy
can be verified. At a minimum, one would wish to verify that the analysis correctly accounts

2Those that come closest are without exception computer implementations, for reasons that should be-
come clear below.

3The text here is taken from Meillet 1903, but the original observation is variously attributed to Meillet,
de Saussure, and von der Gabelentz; translation mine.

4This is believed to be true in principle, and seems likely given current evidence. However, as noted
above, there are no complete formal grammars for any language, so it hasn’t been shown in practice.
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for the data that motivated it. More broadly, analyses should be verified in the contexts of
larger test suites which illustrate their interactions with intersecting phenomena. In the early
days of generative grammar, such verification was prohibitively expensive.5 With modern
computing and computational linguistic technology, however, it is within reach.

The remainder of this paper is structured as follows: §2 provides some background on
hypothesis testing in the field of syntax. §3 gives some general information about grammar
engineering. §4 presents the LinGO Grammar Matrix and describes how it can reduce the
overhead costs of developing grammars. §5 presents the Montage vision of how grammar
engineering can contribute to the documentation of under-described languages.

2 Syntactic Hypothesis Testing

2.1 Preliminaries

For the purposes of this paper, I take syntax to be the means by which natural languages
relate strings of words to their meanings, over an unbounded set of strings of words (cf.
Montague, 1974; Gazdar et al., 1985).6 Secondarily, syntax is a system which models a kind
of well-formedness. From a (human or computer) processing perspective, modeling well-
formedness is potentially useful because it constrains the set of possible structures assigned
to sentences, which in turn reduces the problem of ambiguity resolution. In contrast to
much theoretical work on syntax, I take the string-meaning mapping to be primary and the
modeling of well-formedness to be secondary.

A syntactic hypothesis is a hypothesis about the structures assigned to a class of sentences
or more broadly about constraints on possible grammars.

2.2 Some examples

In this section, I illustrate the notion of a syntactic hypothesis by means of a number of
examples. I will concentrate here mostly on the very broad-brush kind of hypotheses which
can only be validated in principle by building very large models, in some cases, models of
many languages.

Principles and Parameters The Principles and Parameters conceptualization of Uni-
versal Grammar (Chomsky, 1981) holds that particular grammars are composed of universal
principles and settings for particular parameters. Each parameter has a small number of pos-
sible values, and controls a range of (often apparently unrelated) surface phenomena. This
approach has inspired a lot of work exploring connections between different phenomena and

5Though some did try: cf. Friedman et al., 1971.
6In fact, there’s more to linguistic form than strings of words (conceived of as orthography or phonology),

and the form side of this equation should include such things as intonation. For present purposes, however,
I will continue to refer to the linguistic form of an utterance as a string of words.
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similarities across languages. To validate the overall approach, however, would require build-
ing a system which could create grammars for (substantial fragments of) various languages
on the basis of parametric descriptions of those languages.

Semantic Compositionality Another example is semantic compositionality, or the hy-
pothesis that the meaning of an expression is computable from the meaning of its parts
(constituent morphemes) and how they are put together. This hypothesis (or alternatively,
principle) has appeared in many different guises (see e.g., Montague (1970), Szabó (2005),
Partee (1984); for its manifestation within the Grammar Matrix, see Flickinger and Bender
(2003)). Semantic compositionality has often been supported by an appeal to the argument
from productivity (as far back as Frege, 1914): if it didn’t hold, how could we manage to
produce and understand novel utterances? Szabó (2005)

As argued by Reddy (1993), however, it is misleading to see natural language utterances
as a conduit through which speakers convey their precise intended meanings to hearers.
Rather, natural language utterances serve as clues to speakers’ intentions, which hearers
interpret together with whatever other information is at their disposal. Thus for any given
utterance that we understand, novel or not, we are using much more than the words and the
way they are put together. I do not wish to deny that there is something systematic about
how the meaning of an expression is created from the meaning of its parts. My purpose
here is to point out that semantic compositionality falls into the class of ideas which can
be fruitfully explored through the method of fragments: There is much that can be learned
about which aspects of meaning are handled compositionally and how by attempting to model
the relationship between strings and meanings (or meaning representations) for expanding
fragments of natural languages.

Natural Languages as Context-Free Languages An example of a linguistic hypothesis
which has been disproven through careful investigation is the claim that natural languages
(as sets of strings) belong to the class of context-free languages. Early arguments against this
hypothesis were shown to be spurious by Pullum and Gazdar (1982). Gazdar et al. (1985)
then went on to try to develop a grammatical formalism (illustrated through a grammar
for a fragment of English) which was context-free in its generative capacity yet allowed
for the expression of linguistic generalizations (in contrast to naive applications of context-
free grammars to natural language). Shieber (1986) subsequently was able to prove the
non-context-freeness of Swiss German (and by extension, the class of natural languages).
Nonetheless, the grammatical theory worked out in Gazdar et al. (1985) remained useful as
a point of departure for the development of additional precise frameworks (namely, HPSG
in its various versions). A single counterexample was enough to show that natural languages
(in general) are not context free. It would not have been possible in principle to show
conclusively that they are (as a counterexample might always be lurking). However, the
hypothesis could have been supported by building models of ever-increasing coverage, all
within a context-free formalism.

Similarly, the only way to show that the analysis of natural language does not require
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theoretical constructs such as empty categories or movement is to build working grammars
which handle all phenomena purported to require these devices, and then continue to extend
the grammars from there to larger fragments of the language. But how does one discover
phenomena which have not yet been analyzed? Baldwin et al. (2005) propose a method of
using an existing implemented grammar to systematically sift through a corpus for phenom-
ena not yet handled by the grammar (and exceptions to analyses of phenomena that have
been incorporated).

Core and periphery Another pair of broad-brush syntactic hypotheses concern the dis-
tinction between “core” and “peripheral” syntactic phenomena. Some approaches to syntax
delineate a set of “core” phenomena, leaving the remainder (the “periphery”) outside the
scope of syntactic theory. In contrast, Construction Grammar (Kay and Fillmore, 1999)
and related frameworks take the stance that there is no sharp line between “core” and
“periphery”, that natural language syntax involves both broad generalizations and specific
idiosyncrasies, and that these should be stored together in one formally consistent system.
Bender and Flickinger (1999) further argue that in building grammars which countenance
both core and peripheral phenomena, handling the exigencies of the latter (e.g., English
tag questions) provides a means of selecting among competing analyses of the former (e.g.,
agreement).

2.3 Testing hypotheses

As a general rule, one cannot test a syntactic hypothesis merely by looking at surface strings.
These properties typically aren’t apparent in that fashion, nor are they directly accessible
to introspection. Instead, syntacticians build models and test the predictions about gram-
maticality and paraphrase relations made by the model against judgments of acceptability
provided by native speakers.

Such syntactic models vary in their explicitness. At one end, we find general arguments
for or against particular properties of models. When such arguments are made in the absence
of a worked-out grammar for a fragment of the language, it is typically not possible to fully
calculate the predictions they make about any particular string. At the other end of the
scale are elaborated models which are detailed enough that one can process test examples
with them and arrive at predictions of string-meaning mappings as well as grammaticality.
By building elaborated models (and implementing them in machine-readable form so that
computers can handle the testing), we can validate that the assumptions at least work
together as intended. More importantly, since the goal is to ultimately build one model that
accounts for all of the known data pertaining to linguistic competence, we can use elaborated
models to track how well various analyses work together.
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3 Grammar Engineering

Grammar engineering is the practice of building elaborated linguistic models on comput-
ers. Grammar engineering has been used for many years now for practical purposes (e.g.,
Microsoft’s grammar checker, Boeing’s Simplified English grammar checker). Here we are
concerned with its scientific uses. On the one hand, implemented grammars allow the com-
puter to keep track of interactions between analyses. For example, if I add an analysis of
case to a grammar which includes coordination, the computer can calculate the combined
predictions of the two analyses regarding the grammaticality of coordinated noun phrases
with different cases, or coordinated verb phrases with different requirements on the case of
their (shared) subject. On the other hand, implementing a grammar allows the hypotheses
encoded in that grammar to be tested against thousands of examples. Both of these tasks—
calculating how analyses of separate phenomena interact and crunching through thousands
of examples to calculate the grammar’s predictions and how they differ from some previous
state of the grammar—are well-suited to computers and ill-suited to humans.

Software support for creating implemented grammars has been around since the early
days of generative grammar (Petrick, 1965, Zwicky et al., 1965, Friedman et al., 1971). As re-
cently as 10 years ago, however, the technological state-of-the-art made grammar engineering
quite tedious: parsers using the complex grammars required for deep linguistic analysis ran
so slowly that running a thousand-sentence test-suite was an overnight affair. Over the past
10 years, however, advances in parsing technology (see e.g., Oepen et al., 2002) combined
with Moore’s Law7 have changed the equation: it is now possible to run a substantial test
suite quickly enough that such testing can be intimately integrated into the development
cycle, allowing the grammar engineer to explore the consequences of each minor change to
the grammar. Furthermore, since the processing of any given example is independent of
the processing of all the others, it is easy to take advantage of computer clusters to process
multiple examples in parallel, further reducing the time it takes to run a test suite.

The basic requirements for grammar engineering include:

1. A reasonably stable grammar formalism, typically with enough flexibility to encode
a variety of theories. This in turn entails a distinction between the formalism (the
language in which analyses or theories are encoded), the theory (a set of analyses) and
the framework (a set of general guiding principles for syntactic inquiry).

It is important for the formalism to be stable rather than rapidly evolving, because the
formalism is interpreted by software which uses the grammars to parse and generate
sentences. Creating such software requires defining (and refining) a particular version of
the formalism. Subsequent changes to the formalism require changes to the software,
which can be expensive. As a consequence, it is prudent to define a fairly flexible
formalism, such that multiple theories can be explored without having to reimplement
the associated software.

7The tendency of the processing power of computers to double every two years.
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2. Algorithms for parsing (and ideally also generation). These algorithms, implemented
as software, apply the grammars written by the linguist for processing. A parsing
algorithm takes strings as input, and produces syntactic and/or semantic structures as
output. A generation algorithm takes semantic structures (in an appropriate form) as
input, and produces strings as output.

3. Grammar development tools. Using a grammar to parse and generate provides a wealth
of valuable information. Nonetheless, in order to efficiently develop (and debug) such
a grammar, it is useful to be able to manipulate it in various ways, including visual-
izing the components of the grammar and interactively stepping through derivations
of problematic examples. A grammar development environment accordingly provides
a suite of grammar visualization and debugging aides.

4. Test suite management software. Such software facilitates the batch processing of test
examples and the comparison of results across different grammar versions.

Parsers and related tools are available for a variety of frameworks, including HPSG
(Copestake, 2002, Meurers et al., 2002), LFG (Maxwell and Kaplan, 1996), CCG (Baldridge
and Kruijff, 2003), and Minimalism (Stabler, 2001).8 Unlike parsers and generators, test suite
management tools (e.g., Oepen 2002) need not be committed to any particular formalism.
As a result, a single test suite management tool can be integrated with parsers/generators
from different frameworks, facilitating comparative analysis.

4 The LinGO Grammar Matrix

Despite the technological advances described above, it may seem like a daunting amount of
work to implement a grammar large enough to begin to explore the particular phenomena
a linguist is interested in. The LinGO Grammar Matrix (Bender et al., 2002, Flickinger
and Bender, 2003, Drellishak and Bender, 2005, Bender and Flickinger, 2005) is designed to
reduce this start-up cost by providing a substantial jump-start to the development of new
grammars. The Grammar Matrix consists of a cross-linguistic core grammar (code shared by
all grammars) and a set of phenomenon-specific ‘libraries’ which provide implementations for
alternative realizations of phenomena such as basic word order, coordination, and negation.

The Grammar Matrix can be accessed through a web form which elicits information
about the syntactic structures in the language to be modeled and the outputs a customized
grammar ‘start’.9 The web form is arranged into phenomenon-specific sections. For example,
the section on sentential negation asks whether sentential negation is expressed through

8As noted, the development of such software requires a commitment to a particular formalism. The for-
malisms defined by the software may be more or less closely related to the formalisms assumed in theoretical
work.

9The Grammar Matrix customization and download page can be found here:

http://www.delph-in.net/matrix/customize/matrix.cgi
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verbal inflection, an adverb or both. For verbal inflection, the user further specifies whether
the affix in question attaches to auxiliaries only, main verbs only, or any finite verb; whether
it is a prefix or a suffix; and how it is spelled. For adverbial negation, the user can specify
an independent adverb (appearing to the left or right of V, VP or S) or a selected adverb
(cf. Kim, 2000) (selected by main verbs, auxiliaries, or any finite verb). If a language uses
both the inflectional and adverbial strategies for expressing negation, the user is asked to
specify how they may or may not co-occur. The options are: complementary distribution,
both inflection and adverb required, both optional, inflection required/adverb optional, and
adverb required/inflection optional. On the basis of the user’s answers to these questions,
and with reference to their answers to other parts of the questionnaire, the customization
system outputs the appropriate rules and constraints for associating the meaning of sentential
negation with its form, as specified.

4.1 Assumptions

The jump start provided by any such system comes at the cost of accepting the assumptions of
the system. The assumptions encoded in the Grammar Matrix come from three sources: the
typed-feature structure formalism that we have adopted (called ‘type description language’ or
‘tdl’ and recognized by the LKB Grammar Development Environment (Copestake, 2002)),
the general theoretical assumptions of Head-Driven Phrase Structure Grammar (HPSG,
Pollard and Sag 1994), and particular implementation decisions we have made in the Matrix
itself.

Some examples of assumptions or constraints that we inherit from the tdl formalism
include: (i) no relational constraints; if the value of one feature depends on the value of
another, the relationship is simply one of identity, (ii) any given phrase structure rule has a
fixed number of daughters, (iii) tectogrammatic/phenogrammatic equivalence: the yield of
the tree gives the surface string order.

Some examples of assumptions of hypotheses we adopt from HPSG include: (i) Monos-
tratal approach: input strings are associated with a single, elaborated structure, rather than
a sequence of such structures. (ii) No empty elements. (iii) Hierarchical organization: gram-
mars consist of rich collections of constructions, which are arranged into hierarchies in order
to capture the similarities across them. (iv) Local compositionality (cf. Szabó, 2005): the
semantic representation associated with any particular constituent is a function of the se-
mantic representation of its immediate subconstituents and the identity of the rule licensing
the constituent. (v) X′ theory: most phrases are headed; heads select for complements,
subjects, and/or specifiers; the ‘category’ of the mother is determined by the category of the
head daughter and the remaining valence requirements. (vi) Selection of heads by modifiers
and reciprocal selection of heads by specifiers. 10

We adopt a particular precise formalism (tdl) so that we can implement the grammars,
and therefore adopt the assumptions associated with that formalism. We adopt a particular

10These assumptions are not uniformly held within the HPSG community, and variants of the framework
may reject one or more of them.
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Figure 1: Recursive binary branching in head-complement and coordination constructions

framework (HPSG), for theoretical grounding as well as inspiration for particular analyses.11

These two commitments narrow the space of possible grammars somewhat, but there are still
a large number of possibilities remaining. In order to build working grammars, we must adopt
many more working hypotheses. Some of the working hypotheses presently encoded in the
Matrix include binary branching structure, a distinction between subjects and specifiers, the
flat, surface-oriented semantic representations of Minimal Recursion Semantics (Copestake
et al., 2005), and semantic monotonicity. Each of these is discussed briefly below.

Extensive use of binary branching structure For constructions with an unbounded
or variable number of dependents, we posit recursive binary-branching rules rather than
rules with varying number of daughters. In the case of adjuncts, this is not controversial.
In the case of head-complement structures and coordination, it is somewhat more unusual.
Nonetheless, we find the structures schematized in Figure 1 preferable to flatter structures
because the rule systems required to produce the former (and associate them with appropriate
semantic representations) are simpler.

The Grammar Matrix also allows for unary and ternary rules. The latter are a recent
addition motivated by Hausa, which expresses negation through a pair of particles, one on
either end of the clause, as illustrated in (1), (from Newman, 2000:363):

(1) bàà rash̀ın nāmàà (nē) zâi kashè mùtûm ba
neg lack.of meat (focus marker) fut kill person neg

‘It is not that lack of meat will kill a person.’

Treatment of valence features In the Grammar Matrix, we distinguish three kinds of
arguments selected by heads: subjects, complements and specifiers. This classification en-
codes three primary syntactic hypotheses: (i) subjects and specifiers are distinguished from

11This relationship is symbiotic: Results from grammar engineering have informed theoretical work in
HPSG as well.
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complements as external arguments, (ii) there are no further grammatical function distinc-
tions among complements, and (iii) subjects of verbs and other predicates require different
treatment than specifiers of noun phrases and degree specifiers of modifiers. This last dis-
tinction is motivated by a semantic difference: In order to build semantic representations
compositionally, each constituent ‘publishes’ information that constituents higher in the tree
can use (cf. Copestake et al., 2001). In head-subject constructions, the syntactic head (e.g.,
a VP) controls which semantic information is published. In head-specifier constructions, it
is the specifier (non-head) daughter which does so.

Minimal Recursion Semantics We adopt the system of Minimal Recursion Semantics
(MRS, Copestake et al., 2001; Copestake et al. 2005) for our semantic representations. MRS
was designed to meet the competing demands of computational tractability and linguistic
adequacy. It achieves this through flat, underspecified structures which are hypothesized to
be able to capture all linguistically relevant, syntactically marked semantic information while
deferring disambiguation of distinctions like quantifier scope (to the extent that these are not
constrained by the syntax). Minimal Recursion Semantics provides a general definition of
well-formed semantic representations. Within this general definition, however, this is much
room for specific realizations. In the Grammar Matrix, we adopt several design principles:

1. Semantic distinctions which are not syntactically marked in a language should be left
underspecified. A possible example is sequential versus non sequential readings of VP
and S coordination in English:

(2) a. Kim entered the room and saw Sandy.

b. Kim studied Latin and wrote books.

Rather than produce two analyses for each of the sentences (with two different interpre-
tations of and), we simply leave the distinction underspecified at the level of MRS. As
long as any information internal to the sentence relevant to the disambiguation (such
as the order of the conjuncts, the lexical predicates involved, and the tense/aspect in-
formation associated with each predicate) is reflected in the MRS, such disambiguation
can be left to further processing steps.

2. Semantic representations should be closely tied to the surface string and surface syn-
tactic relations. This is required by the combination of local compositionality and the
monostratal theory we adopt. It is also useful in facilitating comparison (for practical
applications) with the even more underspecified semantic representations gleaned from
shallow processing techniques (e.g., Callmeier et al., 2004).

3. Semantic representations should be harmonized across languages to the extent possible.
This facilitates the creation of language-independent software applications which can
be specialized for a particular language by plugging in the right grammar. In addition,
it is interesting in the context of machine translation. At the same time, we are not
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treating MRS as an interlingua, as this design principle is often in tension with the
second one. Languages differ, and so it will not be possible to completely harmonize
“surfacy” semantic representations across languages.

Semantic monotonicity Lexical rules and phrase structure rules can add semantic infor-
mation, but they cannot remove or alter information provided by their constituents.12 For
example, consider the causative-inchoative alternation illustrated in (3):

(3) a. The door opened.

b. Kim opened the door.

One way to represent the difference in meaning between these two uses of opened is to have
opened in (3b) contribute a ‘causative’ relation in addition to the ‘open’ relation. If we wish
to model this alternation via a lexical rule, the constraint of semantic monotonicity requires
that the input be the inchoative open (3a) and the output the causative variant in (3b). In
this way, the rule is adding the ‘causative’ relation, rather than taking it away.

A second example comes from languages which overtly mark definiteness but give un-
marked NPs an indefinite interpretation. The situation is particularly interesting in Hebrew,
where demonstrative adjectives can combine with either definite or bare nouns. An NP is
interpreted as indefinite (i.e., a discourse status of ‘type identifiable’ in Gundel et al.’s (1993)
system) if it contains neither the definiteness inflection nor any demonstrative adjectives.13

(4) a. klb ien b. klb zh ien
kelev yashan kelev ze yashan
dog slept dog this slept
‘A dog slept.’ ‘This dog slept.’

c. h-klb ien d. h-klb h-zh ien
ha-kelev yashan ha-kelev ha-ze yashan
def-dog slept def-dog def-this slept
‘The dog slept.’ ‘This dog slept.’

The interpretation of (4a) is not underspecified, but rather stands in contrast to the other
three. One way to handle this would be to create a (phonologically inert) lexical rule for
indefinites parallel to the lexical rule which adds the definite prefix. However, given examples
like (4b), this approach runs afoul of semantic monotonicity: We cannot remove the infor-
mation that a phrase gets an indefinite interpretation once it has been added. Thus instead

12This constraint is motivated by the goal of making our grammars bidirectional (useful in generation as
well as parsing), as it significantly simplifies the search problem faced by the generator.

13Thanks for Margalit Zabludowski for drawing my attention to this phenomenon and providing the
examples. The first line in each example gives a transliteration from standard orthography. The second is a
transcription line representing the pronunciation. There is a subtle difference in meaning between (4b) and
(4d) not indicated in the English glosses.
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we delay the introduction of this information until the level of NP, where we introduce it
just in case no demonstrative adjectives have been attached.

I have been alternately referring to these propositions as assumptions and hypotheses.
This is because, given the current state of the art and the modes of inquiry available, we
can only test linguistic hypotheses relative to the rest of the model. Thus at any given
point, a constraint (or grammar rule, or other aspect of the model) may be the hypothesis
being directly considered or a background assumption in the testing of another hypothesis.
When one conceives of generative grammar in model-theoretic terms, there are two possi-
ble candidates for the modeling domain: the first is the set of acceptable sentences of the
language in question, and the second is the actual knowledge of language encoded in the
brains of speakers. The analysis (i.e., mapping of surface form to semantics and verification
of well-formedness) of any particular string depends on multiple parts of a grammar. Thus
under the first alternative, it is not generally possible to conclusively support or refute any
particular part of a grammar independently of the grammar that embeds it. Even if we take
the object of study to be the actual linguistic knowledge encoded in the brains of speakers,
we are still typically checking the validity of our model by comparing its predictions with
judgments provided by speakers.14

It should be noted that this relativity of theoretical results is common across syntactic
frameworks, and is furthermore not limited to implemented models. Proposals in theoreti-
cal syntax always contain ancillary assumptions (explicit or implicit), and arguments for or
against particular properties of grammatical models are typically only valid relative to those
assumptions (Bender, 2002). This might seem to be more of a problem for grammar engi-
neering than pen-and-paper syntax: Once an implemented grammar is built around certain
assumptions, those assumptions take on a kind of inertia, as great effort can be required to
revise away from them. When the model only exists in its descriptions in theoretical work, it
would appear easier to revise any piece of it. I would argue, however, that this is actually an
advantage, rather than a disadvantage, of grammar engineering. Without building a single
model which integrates all of the analyses so far, and without testing that model against
test suites representing all of the phenomena analyzed, it can be hard to tell when current
assumptions are subtly incompatible with those required by previous analyses. If the goal
is ultimately a model of linguistic competence, rather than separate models for separate
aspects of linguistic competence, then the extra work required to maintain earlier analyses
over time is beneficial. It is not a matter of slowing down theoretical progress so much as
making theoretical results more durable.

14Psycholinguistics and neurolinguistics can provide more direct information about what people know
about language and how they use that knowledge, and such information should inform the design of models
of grammar (Sag et al., 2003, Ch. 9). Such investigations are expensive (in time and money), however, and
cannot be used to test every single constraint of a model of syntax. It is far more efficient to narrow down the
possibilities first on the basis of acceptability judgments. Furthermore, psycholinguistic and neurolinguistic
studies are completely infeasible in the case of moribund or extinct languages.
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4.2 Cross-linguistic hypothesis testing

The Grammar Matrix core contains constraints which are expected to be useful in all lan-
guages. These include the implementation of semantic compositionality, a large menu of
valence patterns defined in semantic terms (i.e., abstracting away from the part-of-speech of
the arguments, but specifying their semantic type as individuals, propositions/questions, or
expletives), and a superset of part of speech types, arranged into a powerset of disjunctive
types.

Limiting the Matrix to cross-linguistically valid constraints, however, would significantly
limit its usefulness. There are recurring structures across languages which are not universal.
To the extent that there are known analyses for these structures, the Matrix should be able
to provide them. We have begun to do so by developing the phenomena libraries mentioned
above. Work is presently underway on the expansion of existing libraries (for basic word
order, coordination, sentential negation and yes-no questions) as well as on new libraries for
case, agreement, tense, and aspect.

The core grammar and the libraries together allow us to take the hypothesis-testing
benefits of grammar engineering to the level of crosslinguistic hypotheses, forming a kind
of computational linguistic typology. In developing the libraries, we attempt to handle all
known variants of each phenomenon (and document those which we are not yet able to
account for) while harmonizing semantic representations across different language types.
We furthermore aim for cross-compatibility of the libraries, such that each option in the
word order library could in principle be paired with each option in the coordination library.
Where cross-compatibility fails, we explore why: is there a logical incompatibility between
the choices or a specific incompatibility in our analyses? Do the analyses of each particular
option (e.g., VSO word order, or negation through verbal affixation) apply equally to all
languages evincing that phenomenon?

Another approach to using grammar engineering for crosslinguistic hypothesis testing is
represented by the ParGram project (see e.g., King et al., 2005). The ParGram project
involves many grammar engineers at many sites creating broad coverage grammars for a
variety of languages, while working to keep the analyses and representations used by the
grammars parallel. In this way, data from many languages can inform the analyses they
develop. The MetaGramamr (Kinyon et al., 2006) and KPML (Bateman et al., 2005) projects
take yet another tack creating grammar resources in which each piece is tagged for which
languages it applies to. Kinyon et al. have used this approach to explore the similarities and
differences in V2 phenomena across a handful of V2 languages.

4.3 Evaluation

Monolingual grammars (and the hypotheses they represent) are evaluated by using them to
process test suites. Ideally such test suite consist of both hand-constructed (positive and
negative) data as well as naturally occurring corpus data. Evaluating the grammar against
the test suite entails not only checking its predictions of grammaticality but also verifying
that all of the analyses returned for each string are legitimate and lead to well-formed and
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appropriate semantic representations.15 Software assistance for this task is available, in
the form of the treebanking software developed by the Redwoods project (Oepen et al.,
2004). This system assists annotators to choose the preferred analyses for each sentence
to be included in the treebank from among those returned by the grammar. Rather than
examining all of the analyses directly, annotators select among binary ‘discriminants’ for each
forest of trees, indicating, e.g., the attachment site of a particular prepositional phrase or
the appropriate lexical entry in context for some word. The original purpose for this system
was to create dynamic treebanks which could be updated as the grammar evolved (by re-
running the annotator’s choices among discriminants). It is also very useful for grammar
engineers trying to understand how various analyses of a given string are licensed, and to
verify that the analyses are legitimate. Furthermore, once a treebank has been annotated in
this fashion, it can serve as a gold standard for regression testing as the grammar continues
to evolve.

Evaluating a cross-linguistic resource such as the Matrix requires doing such testing
repeatedly, against a variety of languages. In order to get interesting coverage over the
test suites, however, the grammar starts provided by the Matrix customization system need
to be extended. Thus any such evaluation is simultaneously evaluating the Matrix and
the language-specific extensions which have been added to it. Nonetheless, the process of
creating grammars on the basis of the Matrix has been extremely informative in terms of
highlighting errors in the matrix (overly strong assumptions in the cross-linguistic core) as
well as lacunae in the phenomenon libraries. For example, early work applying the Matrix
to Norwegian (Ellingsen, 2004) pointed up the fact that constraining complements to attach
before subjects disallowed VSO word order. More recently, work on Sanskrit and Inupiaq
has highlighted additional coordination marking strategies not covered by Drellishak and
Bender (2005). This Matrix has been tested most intensively in the multilingual grammar
engineering course at the University of Washington, covering 42 languages in four years.
The Grammar Matrix is also being used as the basis for several larger grammars undergoing
sustained development, including grammars of Norwegian (Hellan and Haugereid, 2003),
Modern Greek (Kordoni and Neu, 2005) and Spanish16. In addition, though the JACY
grammar of Japanese (Siegel and Bender, 2002) predates the Grammar Matrix, JACY has
since been adapted to comply with the Matrix.

A logically prior evaluation step, however, is the verification that the libraries are in fact
functioning as intended. Because the libraries are not independent of each other (tout se
tient), they need to be checked for appropriate interactions. The space of possible gram-
mars is enormous (currently in the hundreds of thousands, and we’re just getting started).
Therefore, we have taken a strategy (first laid out in Poulson 2006) of creating a test suite of
abstract strings over a shared vocabulary (e.g., det n1 det n2 tv). These strings are associated
with gold standard semantic representations. The strings are then permuted to create new
string-semantics pairs. We create a set of regular expression filters (relative to the semantic

15Verifying that all of the legitimate analyses are found is more subtle. Typical practice is to rely on the
assumption that a grammar that fails to return a valid parse for one item is likely to fail to return any parse
for another item.

16http://www.upf.edu/pdi/iula/montserrat.marimon/spanish resource grammar.html
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identity of the string in question as well as individual properties of the language type being
tested or small combinations thereof) which allow us to generate appropriate test suites for
randomly-generated grammar starts.

5 The Montage Vision

Since 2003, work on the Grammar Matrix has been situated within the larger context of
exploiting computational tools for language documentation (dubbed the ‘Montage Project’).
On the one hand, we hope to bring the hypothesis-testing power of grammar engineering
to linguists engaged in primary linguistic documentation. On the other hand, applying the
Grammar Matrix to as yet undescribed languages will help expand its typological coverage
and provide an interesting test of its claimed linguistic universals.

The Matrix as it currently exists is not yet ready to be put to use directly by field
linguists. To get there, it will need libraries covering a wider range of phenomena, as well as
interfaces to tools for lexicon and morphological analyzer development.17 In the meantime,
however, the benefits of grammar engineering can be brought to field linguists by supporting
collaborations between field linguists and grammar engineers.

The potential benefits include hypothesis testing and data exploration, allowing field
linguists to ask such question as “Does the grammar account for the data in the texts?” and
“What’s here that we haven’t accounted for?” (cf. Baldwin et al., 2005). In the longer term,
we envision semi-automated annotation, where a small grammar together with underspecified
lexical entries can create parses for as yet unanalyzed sentences. Furthermore, the Grammar
Matrix can be a vehicle for bringing natural language technology to low-density languages.
By creating grammars in a consistent format with consistent, though not identical, semantic
representations, the Matrix facilitates the adaptation of software for grammar checkers,
computer-assisted language learning applications and machine translation to new languages.

6 Conclusion

The tasks involved in formal linguistic analysis include:

1. inventing possible analyses,

2. calculating/verifying the predictions of the analysis for known data, and

3. determining what further predictions those analyses make, leading to further relevant
data to test.

While being able to estimate (2) is an important skill, and actually typically integrated
in (1), doing it with sufficient thoroughness is tedious and time consuming for people, while

17For example, SIL’s Fieldworks (http://fieldworks.sil.org/) or EMELD’s FIELD
(http://emeld.org/tools/fieldinput.cfm).
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well-suited to computers. (3) likewise is essential, and must be done at least in part by a
human linguist. At the same time, the computer can nicely complement the work a person
can do: relevant data may be lurking already in the existing test suite, and furthermore,
processing naturally occurring corpora can turn up example types that the linguist may
never arrive at otherwise.

I have argued that grammar engineering can be useful, though it is expensive and time-
consuming. The Grammar Matrix reduces the cost of creating new grammars, and reduces it
more with each library that is added. At the same time, it increases the benefits of creating
implemented grammars by increasing both interoperability for cross-linguistic hypothesis
testing and interoperability for practical applications.
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