
The Lexicon in the LinGO
Grammar Matrix:

Cross-linguistic Hypotheses
about Words

Emily M. Bender
February 24, 2004

Overview

• Precision grammars

• What is the Matrix?

• Phrase structure rules and the syntax-
semantics interface in the Matrix

• Lexical types in the Matrix

• Future work: Montage

Why precision grammars?

• Applications requiring natural language
understanding: automated email response,
CALL, dialogue systems, precision machine
translation

• Improved resources as input to machine
learning techniques

• Linguistic and cross-linguistic hypothesis
testing, language documentation

• HPSG (Pollard & Sag 1994)

• MRS (Copestake et al 2003)

• LKB (Copestake 2002)

• PET/cheap (Callmeier 2000, Oepen et al 2002a)

• Treebanking/stochastic parse selection
techniques (Oepen et al 2002b, Toutanova et al 2002)

• DeepThought: Interfaces to robust shallow
parsing (www.eurice.de/deepthought)

Resources

• Labor-intensive, expensive process

• Interoperability across grammars

• Reusability of resources/analyses

• Robustness in the face of real-world language
use

Challenges

• Desiderata:

• Core/periphery compatibility

• Scalability

• Maintainability

• Semantic compositionality

• Standardized semantic output

Precision grammar
development

• Cross-linguistically valid core grammar:
• rapid initial start-up
• steady expansion to broad coverage

• Standardized semantic output:
• interoperability

• HPSG/Construction Grammar formalism:
• scalability
• modularity
• core and periphery

The LinGO Grammar
Matrix

(Bender, Flickinger & Oepen 2002)

HPSG and types
• HPSGs are typed feature structure grammars

• Grammatical information represented as
constraints on possible words and phrases

• Constraints are stated on types, representing
classes of linguistic objects

• Types are organized into a multiple-inheritance
hierarchy, representing
• Generalizations at varying granularities
• Cross-cutting generalizations

• Constraints extracted from (experience with)
large-scale implemented HPSGs:

• English
• German
• Japanese

• Preliminary version used for:

• Norwegian
• Italian
• Modern Greek

The LinGO Grammar
Matrix

• Types defining basic feature geometry

• Underspecified construction types

• Implementation of compositional semantics

• Definitions of semantic structures

• Collateral files for interaction with the LKB
grammar development environment (Copestake
2002).

• New: Initial hypotheses about lexical types

What is in the Matrix (v0.6)?

How big is the Matrix?

Grammar Types Lines of code

Matrix v0.6 202 1208
Matrix with
lexical types 245 1726

ERG (12/03) 3413 22518
Modern Greek

(2/04) 816 4331

NorSource (12/03) 2077 6415

• Universal aspects of a Sem-I (semantics interface)

• Modules for non-universal yet recurring
phenomena, e.g.:

• tense/aspect systems

• numeral classifiers

• Support for creating test suites for regression
testing

• ...

What will be in the Matrix?

Early experiments:
Modern Greek

• In development since 1/03; primary developer
works just 10 hours a week

• Phenomena covered:
• Internal syntax of NPs
• Subordinate clauses, incl relative clauses
• Long-distance dependencies
• Raising and control
• Politeness constructions
• Cliticization
• Valence alternations
• Word order phenomena

(Kordoni & Neu 2003a,b)

Early experiments:
Scandinavian Matrix

• Norwegian grammar underdevelopment since
1/02 (Matrix v0.1).

• Extensive coverage, including: linking,
predicative complements, presentational
constructions, passive, light pronouns...

• Using it as a basis for Swedish and Danish
grammars, possibly directly, possibly as the
basis of a Scandinavian Matrix

(Hellan & Haugereid 2003)

Hypotheses in the Matrix
• Essentially a bottom-up approach to UG
• First pass hypotheses concern which parts of

existing grammars are likely to be cross-
linguistically useful

• Study Matrix-derived grammars for a variety of
languages to see what is and isn’t useful

• Move some constraints/subsystems into
separate modules

• Look for exhaustive classifications on the basis
of actual grammars

Sample phrase structure rule:
head-complement cxs

• Make a phrase out of a word or phrase looking
for some complements and it’s first
complement.

• Unify the synsem of the complement with the
complement requirement of the head.

• Gather up the semantic contributions of both
daughters.

• Collect non-local features from the head
daughter.

[
COMPS 2

]
→

[
COMPS 〈 1 〉 ⊕ 2

]
,
[
SYNSEM 1

]

Sample phrase structure rule:
head-complement cxs

basic-head-comp-phrase := head-valence-phrase & head-compositional &
 binary-headed-phrase &

 [SYNSEM canonical-synsem &
 [LOCAL.CAT [MC #mc,

 VAL [SUBJ #subj,
 COMPS #comps,
 SPR #spr],
 POSTHEAD #ph],
 LEX #lex],
 HEAD-DTR.SYNSEM [LOCAL.CAT [MC #mc,
 VAL [SUBJ #subj,
 COMPS < #synsem . #comps >,
 SPR #spr],
 POSTHEAD #ph],
 LEX #lex],
 NON-HEAD-DTR.SYNSEM #synsem & canonical-synsem,
 C-CONT [RELS <! !>,

 HCONS <! !>]].

Long distance dependencies
• Topicalization (SLASH), pied-piping in relative

clauses (REL) and questions (QUE)
• SLASH: Each phrase records via this feature

whether there is anything ‘missing’ inside it
• Certain constructions require a daughter with

a missing element
• Heads collect non-local feature values of their

dependents, and pass them up to their
mothers, except in head-filler constructions

• Traceless analysis
(Bouma et al 2001)

Syntax-semantics interface
• MRS: Flat semantic representations;

underspecification of scope.
• With scope resolved, equivalent to predicate

logic.
• The heart of an MRS is a bag of relations.
• Every constituent exposes a small amount of

information about its relations via the HOOK:
• A distinguished index
• The topmost handle (for scope purposes)
• The index of its external argument (if any)

(Copestake et al 2003, Flickinger & Bender 2003)

Convergent semantic
representations

• MRS designed for: expressivity, computational
tractability, scalability, underspecification

• The Matrix aids grammar engineers in
producing valid MRS representations

• The Matrix also helps standardize
representations of specific linguistic
phenomena, e.g., number names,
nominalizations, etc.

• Standardized output ensures interoperability

Lexical types: Desiderata

• Illustrate properties of words required by the
specific encoding of the phrase structure rules

• Standardize lexical aspects of the syntax-
semantics interface

• Encode a space of possibilities that are likely
to be useful cross-linguistically

• Allow for extensibility without changing the
existing Matrix hierarchy

Lexical types:
Dimensions of classification
• Semantic contribution

• Inflectional status; light vs. heavy status

• Number of arguments

• Introduction and amalgamation of non-local
features (SLASH, REL, QUE)

• Subcategorization/linking

• Part of speech

Lexical types:
Dimensions of classification

lex -item

semantic defaults

part of speech

inflectional status # of arguments

non-local features

subcat/linking

Semantic defaults

• norm-hook-lex-item: the HOOK features are
related in the ordinary way to the main
semantic relation (KEY relation)

• single-rel-lex-item: lexical item contributes
exactly one relation

• no-hcons-lex-item: lexical item contributes no
handle constraints

• norm-sem-lex-item: all of the above

Semantic defaults
norm-hook-lex-item := lex-item &
 [SYNSEM [LOCAL.CONT [HOOK [LTOP #ltop,
 INDEX #index],
 RELS.LIST.FIRST #keyrel],
 LKEYS.KEYREL #keyrel & [LBL #ltop,
 ARG0 #index]]].

single-rel-lex-item := lex-item &
 [SYNSEM.LOCAL.CONT.RELS 1-dlist].

no-hcons-lex-item := lex-item &
 [SYNSEM.LOCAL.CONT.HCONS 0-dlist].

norm-sem-lex-item := norm-hook-lex-item &
 single-rel-lex-item &
 no-hcons-lex-item.

Semantic defaults

lex -item

norm-hook -lex -item single-rel -lex -item

norm-sem-lex-item

no-hcons-lex -item

Inflectional status

lex -item

[
uninflected-lexeme

INFLECTED −

] [
fully-inflected-lexeme

INFLECTED +

]

Number of arguments/
non-local features

• How many arguments does the lexical item
select for (subject, complements, specifier)?

• Does it amalgamate non-local features from all
of the dependents?

• Does it introduce non-local features of it’s
own?

• We expect more types in this dimension will
need to be added for particular languages.

Number of arguments/
non-local features

lex -item

basic-zero-arg

. . .

basic-one-arg basic-two-argbasic-three-arg

Number of arguments/
non-local features

basic-two-arg := lex-item &
 [SYNSEM [LOCAL.ARG-S < [NON-LOCAL [SLASH [LIST #smiddle,

 LAST #slast],
 REL [LIST #rmiddle,
 LAST #rlast],
 QUE [LIST #qmiddle,
 LAST #qlast]]],

 [NON-LOCAL [SLASH [LIST #sfirst,
 LAST #smiddle],

 REL [LIST #rfirst,
 LAST #rmiddle],
 QUE [LIST #qfirst,
 LAST #qmiddle]]]>,

 NON-LOCAL [SLASH [LIST #sfirst,
 LAST #slast],

 REL [LIST #rfirst,
 LAST #rlast],
 QUE [LIST #qfirst,
 LAST #qlast]]]].

Number of arguments/
non-local features

basic-zero-arg

zero-arg-nonslash

zero-arg-rel

zero-arg-nonrel

zero-arg-que

zero-arg-nonque

zero-arg-slash

norm-zero-arg

Number of arguments/
non-local features

basic-zero-arg := lex-item &
 [SYNSEM.LOCAL.ARG-S < >].

zero-arg-nonslash := lex-item &
 [SYNSEM.NON-LOCAL.SLASH 0-dlist].

zero-arg-nonrel : = lex-item &
 [SYNSEM.NON-LOCAL.REL 0-dlist].

zero-arg-nonque : = lex-item &
 [SYNSEM.NON-LOCAL.QUE 0-dlist].

Subcategorization
and linking

• What kinds of arguments does a head select?
• How are the arguments linked to semantic

roles?
• Argument kinds are distinguished semantically
(referential arguments v. clausal arguments).

• Semantic roles are simply numbered, and
semantically linked arguments are linked in
order.

• Linking is all through ARG-S, leaving valence
features to particular grammars

Subjects and objects

• intransitive: Kim slept.

• expletive only: It rained.

• transitive: Kim eats lunch.

• ditransitive: Kim gave Sandy a book.

Subjects and objects

• clausal intransitive: That Kim sleeps is obvious.

• clausal transitive 1: That Kim sleeps surprises
Sandy.

• clausal transitive 2: Sandy believes that Kim
sleeps.

Subjects and objects

• Clausal ditransitive: Kim told Sandy that Pat
slept.

• Clasual expletive argument: It is obvious that
Kim sleeps.

• First argument raising: Kim seems to sleep.

• First argument control: Kim tries to sleep.

Subjects and objects

• Ditrans 1st arg raising: Kim appears to Sandy to
sleep.

• Ditrans 1st arg control: Kim promised Sandy to
leave.

• Ditrans 2nd arg raising: Kim believed Sandy to
have left.

• Ditrans 2nd arg control: Kim appealed to Sandy
to leave.

Subjects and objects
ditrans-first-arg-raising-lex-item := basic-three-arg &
[SYNSEM [LOCAL.ARG-S <[LOCAL.CONT.HOOK.INDEX #ind1],
 [LOCAL.CONT.HOOK.INDEX #ind2],
 [LOCAL.CONT.HOOK [XARG #ind1,

 LTOP #ltop]]>,
 LKEYS.KEYREL [ARG1 #ind2,

 ARG2 #ltop]]].

ditrans-first-arg-control-lex-item := basic-three-arg &
[SYNSEM [LOCAL.ARG-S <[LOCAL.CONT.HOOK.INDEX #ind1],
 [LOCAL.CONT.HOOK.INDEX #ind2],
 [LOCAL.CONT.HOOK [XARG #ind1,

 LTOP #ltop]]>,
 LKEYS.KEYREL [ARG1 #ind1,

 ARG2 #ind2,
 ARG3 #ltop]]].

Specifiers (and subjects/
objects)

• Specifier plus one argument: a book about dogs,
very fond of Kim

• Specifier plus clausal argument: the fact that Kim
left, very happy to be here

• Specifier plus raising: Kim is completely eager to
please

Parts of speech

• Encode semantic generalizations about
lexemes from different parts of speech.

• Underspecify HEAD values, as the exact shape
of the head subhierarchy seems likely to be
language dependent.

Parts of speech
basic-verb-lex := norm-sem-lex-item &
 [SYNSEM.LKEYS.KEYREL event-relation].

basic-adjective-lex := norm-sem-lex-item &
 [SYNSEM.LKEYS.KEYREL event-relation].

basic-adposition-lex := norm-sem-lex-item &
 [SYNSEM.LKEYS.KEYREL prep-mod-relation].

basic-adverb-lex := norm-sem-lex-item &
 [SYNSEM.LKEYS.KEYREL adv-relation].

basic-noun-lex := norm-sem-lex-item &
 [SYNSEM.LKEYS.KEYREL noun-relation].

Parts of speech

basic-determiner-lex := norm-hook-lex-item &
 [SYNSEM [LOCAL [CAT.VAL.SPEC.FIRST.LOCAL.CONT.HOOK
 [INDEX #ind,

 LTOP #larg],
 CONT [HCONS <! qeq &

 [HARG #harg,
 LARG #larg] !>,

 RELS 1-dlist]],
 LKEYS.KEYREL quant-relation &
 [ARG0 #ind,
 RSTR #harg]]].

Parts of speech
basic-subord-conjunction-lex := basic-one-arg &
[SYNSEM.LOCAL[ARG-S <[LOCAL.CONT.HOOK.LTOP #ltop1]>,

 CAT.HEAD.MOD <[LOCAL.CONT.HOOK.LTOP #ltop2]>,
 CONT [HCONS <! qeq &

 [HARG #harg,
 LARG #larg] !>,

 RELS <! relation,
 message &

 [LBL #msg,
 PRED proposition_m_rel,
 MARG #harg] !>,

 HOOK [LTOP #msg]]],
 LKEYS.KEYREL subord-relation &
 [LBL #larg,
 L-HNDL #ltop1,
 R-HNDL #ltop2]]].

Lexical types:
Summary

• Despite the success of the Matrix so far, its
usefulness has been limited by the lack of
lexical resources.

• These initial hypotheses should make the
initial start-up of a new grammar even faster.

• The supplied types will also serve as models for
such additional types as will be needed.

• Some of these types will undoubtedly need to
be refined and/or moved off to modules.

Future work:
Montage

• Leverage advances in grammar engineering for
documenting grammars of endangered
languages

• Pair with tools for corpus annotation and
descriptive grammar work

• Create accessible and persistent resources for
linguistic research (Bird & Simons 2003)

• Stringent test of universals in the Matrix

Three levels of linguistic
description

• Corpus annotation

• Electronic descriptive grammars

• Implemented formal grammars

Corpus annotation

• Annotated transcribed texts for grammatical
information: conditional sentence, past-tense
verb, etc.

• Software provides intuitive interface and
creates XML (for portability)

Corpus annotation

• Linked to linguistic ontologies such as GOLD
(Farrar & Langendoen 2003)

• Computer-assisted annotation: machine
suggests further candidates

• Interface to lexicon software, e.g. FIELD
(http://emeld.org/tools/fieldinput.cfm)

Electronic descriptive
grammars

• Provide “views” on corpus examples to put
relevant data at the linguist’s fingertips

• Facilitate creation of web-based grammars
where readers can “click through” to find all
the corpus examples annotated for each
phenomenon

• Facilitate output suitable for printing as a book

Electronic descriptive
grammars

• Make web-published grammars discoverable to
external searches through linguistic ontologies

• (Grammars only published if the author and
the community so wish)

• Semi-automated testing of analyses against
annotated corpus examples

Implemented formal
grammars

• HPSG: Express generalizations across larger
and larger sets of constructions/phrases/words

• Again indexed via a linguistic ontology

• Provide more extensive hypothesis testing,
within and across languages

• Suitable for use in machine (assisted)
translation, computer assisted language tutors

Implemented formal
grammars

• Based on the Matrix and similar encodings of
grammar engineering best practice, automate
as much as possible

• First steps: Induce underspecified grammars
from labeled bracketings and lexical
information

• Long run: “Wizards” which customize Matrix
types based on parametric questions

Summary
• The Grammar Matrix aids in the rapid start up

of precision grammars
• Matrix grammars are all compatible with the

same software for NLP applications
• The addition of lexical types to the Matrix

should significantly increase its usefulness
• Future work: Montage will leverage the Matrix

for language documentation and serve as a
stringent test of Matrix hypotheses about
universals

