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Hovy & Spruitt 2016
“The Social Impact of Natural Language Processing’

« Survey of some types of issues

 Importantly raised awareness of the discussion within English-language NLP
circles

* Introduced concepts of:

 Exclusion, Ovegeneralization, Bias confirmation, Topic Overexposure, Dual
use

* lllustrated with NLP-specific examples of negative impacts

* Not exhaustive, not a typology



The L in NLP Is Language, language means people
(Schnoebelen 2017)

« Schnoebelen, summarizing EthNLP 2017 (Hovy et al 2017):

- Look to NLP (and Al) to assist people, not replace them

* Engage with scholarly disciplines that have a better understanding of
people

 Value sensitive design (Friedman et al 2006, Friedman & Hendry to appear):

- Identify stakeholders

 Design to support stakeholders’ values



The L in NLP Is Language, language means people

Direct stakeholders Indirect stakeholders
By choice Subject of query
Not by choice Contributor to broad corpus

Subject of stereotypes




Direct stakeholders: By choice

* | choose to use this spell checker, autocorrect, voice assistant, MT system...

- ... but it doesn’t work for my language or language variety

« Suggests that my language/language variety is inadequate

- Makes the product unusable for me

* ... but the system doesn’t indicate how reliable it is

 Users reliant on MT/auto-captioning for important info left in the dark
about what they might be missing



Direct stakeholders: Not by choice

* My screening interview was conducted by a virtual agent

* [ can only access my account information via a virtual agent

* ... but it doesn’t work or doesn’t work well for my language variety

» | scored poorly on the interview, even though the content of my
answers was good

» | can’t access my account information



Direct stakeholders: Not by choice

* LM technology can now generate very real sounding text, in English at least
(Radford et al 2019)

* ... but which is not grounded in any actual relationship to facts

- | mistake the text for statements made by a human publicly
committing to them

* | become more distrustful of all text | see online



Indirect stakeholders: Subject of query

e Someone searched for me online

* ... but the search triggered display of negative ads including my name
because stereotypes about my ethnic identity (Sweeney 2013)

- Someone searched for critics of the government

- ... and found my blog post/tweet

- Someone put my words into an MT system

* ... which got the translation wrong and led the police to arrest me
(The Guardian, 24 Oct 2017; https://bit.ly/2zyEetp)



https://bit.ly/2zyEetp

Indirect stakeholders: Subject of query

Facebook
e Sor

Facebook translates 'good morning' into
'attack them', leading to arrest tive

Palestinian man questioned by Israeli police after embarrassing
. Spor Mistranslation of caption under photo of him leaning against
bulldozer

« Sor



https://bit.ly/2zyEetp

Indirect stakeholders: Subject of query

e Someone designed a system to classify people by identity characteristics
according to linguistic features

* Information | thought | was presenting only in some venues is made
available in others



Indirect stakeholders: Contributor to lbroad corpus

- ASR doesn't caption my words as well as others'

* My contributions are rendered invisible to search engines

e | anguage ID systems don’t identify my dialect

+ Social-media based disease warning systems fail to work in my
community (Jurgens et al 2017)



Indirect stakeholders: Subject of stereotypes

e Virtual assistants are gendered as female and ordered around

e Systems are built using general webtext as a proxy for word meaning or world
knowledge

* ... but general web text reflects many types of bias (Bolukbasi et al 2016,
Caliskan et al 2017, Gonen & Goldberg 2019)

* My restaurant’s positive reviews are underrated because of the name
of the cuisine (Speer 2017)

« My resume is rejected because the screening system has learned
that typically “masculine” hobbies correlate with getting hired

- My image search reflects stereotypes back to me



Indirect stakeholders: Subject of stereotypes
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Data Statements for NLP: Transparent documentation
(Bender & Friedman 2018)

- Foreground characteristics of our datasets (see also: Al Now Institute 2018, Gebru et
al 2018, Mitchell et al 2019)

- Make it clear which populations & linguistic styles are and are not represented
- Support reasoning about what the possible effects of mismatches may be
* Recognize limitations of both training and test data:

 Training data: effects on how systems can be appropriately deployed

- Test data: effects on what we can measure & claim about system
performance
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Proposed Schema: Short Form

« 60-100 word summary of the information in long form data statement, hitting
most main points

* Include pointer to where the long form can be found
« Paper presenting the dataset originally
* Project web page

- System documentation



Who's job is this”

* NLP researchers & developers: build better systems, promote systems
appropriately, educate the public

* Procurers: choose systems/training data that match use case, align task
assigned to NLP system with goals

- Consumers: understand NLP output as the result of pattern recognition,
trained on some dataset somewhere

- Members of the public: learn about benefits and impacts of NLP and
advocate for appropriate policy

* Policy makers: consider impacts of pattern matching on progress towards
equity, require disclosure of characteristics of training data



Case: Direct stakeholders whose varieties aren’t
well represented

* NLP researchers & developers: Map out underrepresented language
varieties and direct effort appropriately; test approaches more broadly

* Procurers: Is this trained model likely to work for our clientele?
- Consumers: Is this trained model likely to work for me?

- Members of the public: Advocate for models trained on datasets that are
responsive to the community of users

* Policy makers: Require automated systems to be accessible to speakers of
all language varieties in the community



Case: Indirect stakeholders subject to stereotypes

* NLP researchers & developers: Conceptualize training text as things
specific people have said, rather than unproblematic ‘common sense
knowledge’

* Procurers: What kind of text underlies the system I’'m purchasing and how
do the tasks I’m setting for it risk amplifying biases from that text?

- Consumers: Know what is the ultimate source of this information I’'m seeing
and understand it as the viewpoints of people (aggregated)

- Members of the public: Advocate for transparency

* Policy makers: Require automated systems to be transparent about sources
of ‘knowledge’



Data statements are not a panacea!

- Mitigation of the negative impacts of NLP will require on-going work and
engagement (and cost/benefit analysis)

- Data statements are intended as one practice among others that position us
(in various roles) to anticipate & mitigate some negative impacts

* Probably won’t help with e.g.:
 impacts of gendering virtual agents

* privacy concerns around classification of identity characteristics



Sut they may help iIn combating automation bias
(Skitka et al 2000)

By foregrounding characteristics of training datasets, foreground:
* The L in NLP means Language, language means people

- The datasets NLP systems are trained on ultimately come from people,
speaking about certain topics, for a certain purpose

 Treat text-derived ‘common sense’ with skepticism, understand where it is
being used

- Understand machine output as pattern matching against specific (if large)
datasets, not expert decision making



Lessons from sociolinguistics
(e.g. Labov 1966, Eckert & Rickford 2001)

- Variation is the natural state of language

* Meaning, including social meaning, is negotiated in language use

 QOur social world is largely constructed through linguistic behavior

- Keeping these lessons in focus will help us make better, more responsive
natural language technology
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