LING 472 Section 5/19




Assignment 4 Parts 2 & 3

* Part 2

» Restrict the grammar to account for agreement between subject and verb.

 Restrict the grammar so that transitive and intransitive verbs must go through
the appropriate VP rules.

* Your rules.tdl should have a lot of redundancy in it.

* Part 3
* The goal is to remove the redundancy by putting common rules into types.tdl

* There is no restriction on what features you can access in types.tdl — all can
be accessed, you can use reentrancy

* You can think of types.tdl as a list of interfaces, and rules.tdl and lexicon.tdl as
a list of classes and instantiations that inherit from those interfaces.

* When you have a < list > in tdl, it is always of a certain length.



Training, Development, & Test Sets

Data Set




Training, Development, & Test Sets

X% —

100 - x% —

Test

— Data Set




Training, Development, & Test Sets

X% —

100 - x% —

Training

Test

Training: Used to train the
model (create probabilities),
decide on methods used

Test: Used to test the model,
based on what you/the model
learned from training. Ideally
you test once.



Training, Development, & Test Sets

y%—

Training

X%

— Data Set

100 - x% — Test




Training, Development, & Test Sets

Training: Used to train the
Training model (create probabilities, etc)

X% —

y %~
Dev: Used to test the model
created in training, can refine and

_y%{
run multiple times

100 - x% — Test Test: Used to test the model,

after development is done.
Ideally run once.

x




Training, Development, & Test Sets

Training

During development:

1. Train on the training set.

2. Test on the dev set.

3. Refine your training algorithm.
4. Repeat from 1.

(Test is ignored)



Training, Development, & Test Sets

After development:
Training + Dev 1. Train on the training + dev set.
2. Test on the test set.

3. Fix any bugs in running the
code, if necessary. (DON’T
change the algorithm!)

4. Report on performance.

Test




Training, Development, & Test Sets

* General pointers:

* Your data sets should all look the same (same formatting, same
preprocessing)

* The ratio for training : dev should be about the same as the ratio of
training+dev : test

* When you’re looking at your corpus/corpora to get ideas about how to write
your algorithm, restrict yourself to training, or training + dev, don’t look at
test.



Reporting and Presenting

* You need to present about your:
e Research question
* Data set
* Algorithm (for Part 1)
* Results (for Part 1)
* What you plan to do for Part 2



Reporting and Presenting

* Research question

* What is the question that your project is attempting to answer? Why is it
interesting?

* Data set
* Where did you get your data from?
* How did you divide into to training, (development,) and test sets?

* What preprocessing did you do on it, if any?

e Algorithm (Part 1)
* How are you answering the research question?
* Be as detailed as necessary without talking about code.



Reporting and Presenting

* Results (Part 1)
* What was your baseline?
What metrics are you reporting?
How did your baseline perform on the test set?
How did your algorithm perform on the test set?

Why do you think your algorithm performed the way it did? What kind of
errors did it make?

e Plans for Part 2

* How are you going to modify your algorithm for Part 2? How will this address
shortcomings you discovered in your results from Part 1?



