
Ling/CSE 472: Introduction to Computational 
Linguistics	

5/11/17

Parsing, unification, parsing with unification



Overview

• Reading questions (finishing from Tuesday)


• Unification


• Parsing with unification


• Evaluating parsing


• Reading questions



Unification

• Input: Two feature structures 


• Output: Failure signal or the unique most general feature structure 
containing all info from both inputs



Unification algorithm

• Use graphs to represent feature structures


• Augment these structures with another layer, adding features ‘pointer’ and 
‘content’


• Use pointers to merge the graphs representing the two input feature 
structures (why?)


• Unification is recursive (why?)


• Unification is destructive (why?)



Unification algorithm



Unification algorithm: Example

f1:

f2:



Unification algorithm: Result



Unification example

• Represent each feature structure as a DAG


• Add the ‘pointer’ and ‘contents’ features


• Step through the unification algorithm to produce the result


• How would we have to alter this to handle typed feature structures?

⇧

 ⌥
A 1

↵
B c

�

D
↵
E 1

�

⌃

⌦�
�
⇤
D

�
E
↵
F g

�⇥⌅



Parsing with unification

• Associate feature structure constraints with rules


• Associate feature structures with edges


• Could just check after CFG parsing is done, but this is inefficient (why?)


• Instead: invoke unification when combining edges (COMPLETER)


• When deciding whether an edge to add is redundant, test is now 
subsumption (rather than identity): don’t add edges that are subsumed by 
something already in the chart



Evaluation slide

• When we are evaluating parsing algorithms (rather than parsers 
incorporating specific grammars), what are we evaluating them for?


• What kinds of tests could we perform?


• What inputs do we need for the tests?



Reading questions

• "Unfortunately, this solution is inadequate since it does not meet our 
requirement that the two arguments be truly unified. Since the two arguments 
are not completely unified at the top level, future unifications involving one of 
the arguments would not show up in the other.” Why not?




Reading questions

• If the lower half of the diagram is changed (i.e. content -> b is added), this will 
not be visible by the upper half since nothing points to it. If we had a more 
complex structure (so the upper and lower DAGs are part of two separate 
larger DAGs) wouldn't this be an issue?


• If you have a node's pointer point to another node, can you delete the content 
node and everything that follows on that path?



Reading questions

• On page 537 it says that some people create a separate metalanguage that 
describes feature structures to implement operations like negation, 
disjunction, etc, which is distinguished from the actual feature structures. 
Could you explain how this works?


• How can negation be applied to unification? Does this mean one, or both 
features is 'negated'? If so, what does it mean to negate a feature?



Reading questions

• If/when we were to implement a type based feature structure, how would we 
go about assigning types? Would it not require us to manually assign the 
types of each element of our lexicon? Are there corpora with the most useful 
type information available for all English words?


• How does the type hierarchy to solve the generalization problems?


• What would be a linguistic example of a complex type with a feature whose 
value is also a complex type?


