
Ling/CSE 472: Introduction to Computational
Linguistics	

5/9/17

Feature structures and unification

Overview

• Problems with CFG

• Feature structures

• Unification

• Agreement

• Subcategorization

• Long-distance Dependencies

• Reading questions

Problems with CFG (with atomic node labels)

• Simple rules, with simple category sets overgenerate:

• What are some non-sentences that this CFG licenses?

S ! NP VP

NP ! (Det) Noun

VP ! Verb (NP) (NP|PP)
PP ! Prep NP

Noun ! cat, cats, dog, dogs, I, you, we, they, he, she, it

Det ! the, a, this, these, some, many

Verb ! bark, barks, barked, am, is, are, was, were,

rely, relies, see, sees, saw

Prep ! on, in, above, before

Problems with CFG (with atomic node labels)

• How could that be fixed, using the CFG formalism?

S ! NP sg VP sg

S ! NP pl VP pl

NP sg ! (Det sg) Noun sg

NP pl ! (Det pl) Noun pl

VP sg ! V intrans sg

VP sg ! V trans sg NP sg

VP sg ! V trans sg NP pl

. . .

Generalized Phrase Structure Grammar (GPSG)

• Gazdar et al 1982

• Added feature structures to CFG, but stayed CFG-equivalent

• Eventually, it became generally accepted that natural languages are in fact
not context free

• GPSG generalized to HPSG (Pollard & Sag 1994)

Feature Structures

• Break ‘atomic’ symbols like ‘V_intrans_sg’ into bundles of information

• Allows for the statement of cross-cutting generalizations

denies deny

disappears disappear

3rd singular subject

direct object NP

no direct object NP

plural subject

Attribute value matrices
⎡

⎢

⎢

⎢

⎣

FEATURE1 VALUE1

FEATURE2 VALUE2

. . .

FEATUREn VALUEn

⎤

⎥

⎥

⎥

⎦

• Values can be atomic symbols, or feature structures in their own right.

Unification

• Test whether two feature structures are compatible

• If so, find the most general feature structure that includes all information
from both

• Section 15.2 shows unification of untyped feature structures

• Pizza examples (following) add in types (see 15.6)

© 2003 CSLI Publications

A Pizza Type Hierarchy
pizza-thing

pizza
[

CRUST,

TOPPINGS

]

topping-set
⎡

⎢

⎢

⎣

OLIVES,

ONIONS,

MUSHROOMS

⎤

⎥

⎥

⎦

vegetarian

non-vegetarian
⎡

⎢

⎣

SAUSAGE,

PEPPERONI,

HAM

⎤

⎥

⎦

© 2003 CSLI Publications

TYPE FEATURES/VALUES IST
pizza-thing

pizza pizza-thing

topping-set pizza-thing

vegetarian topping-set

non-
vegetarian topping-set

⎡

⎣

CRUST
{

thick, thin, stuffed
}

TOPPINGS topping-set

⎤

⎦

⎡

⎢

⎣

OLIVES
{

+, −
}

ONIONS
{

+, −
}

MUSHROOMS
{

+, −
}

⎤

⎥

⎦

⎡

⎢

⎣

SAUSAGE
{

+, −
}

PEPPERONI
{

+, −
}

BBQ CHICKEN
{

+, −
}

⎤

⎥

⎦

HAM

© 2003 CSLI Publications

A type hierarchy....

• ... states what kinds of objects we claim exist (the
types)

• ... organizes the objects hierarchically into classes
with shared properties (the type hierarchy)

• ... states what general properties each kind of object
has (the feature and feature value declarations).

Type Hierarchies

© 2003 CSLI Publications

Pizza Descriptions and Pizza Models
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

pizza

CRUST thick

TOPPINGS

⎡

⎢

⎣

vegetarian

OLIVES +

ONIONS +

⎤

⎥

⎦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

How many pizza models (by definition, fully
resolved) satisfy this description?

© 2003 CSLI Publications

Answer: 2
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

pizza

CRUST thick

TOPPINGS

⎡

⎢

⎣

vegetarian

OLIVES +

ONIONS +

⎤

⎥

⎦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

{<CRUST , thick> , <TOPPINGS , { <OLIVES ,
+ > , <ONIONS, +> , <MUSHROOMS, −>}>}

{<CRUST , thick> , <TOPPINGS , { <OLIVES ,
+ > , <ONIONS, +> , <MUSHROOMS, +>}>}

© 2003 CSLI Publications

Pizza Descriptions and Pizza Models
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

pizza

CRUST thick

TOPPINGS

⎡

⎢

⎣

vegetarian

OLIVES +

ONIONS +

⎤

⎥

⎦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

How many pizzas-in-the-world do the pizza
models correspond to?

Answer: A large, constantly-changing number.

© 2003 CSLI Publications

Pizza Descriptions and Pizza Models
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

pizza

CRUST thick

TOPPINGS

⎡

⎢

⎣

vegetarian

OLIVES +

ONIONS +

⎤

⎥

⎦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

‘type’/‘token’ distinction
applies to sentences as well

© 2003 CSLI Publications

Combining Constraints

⎡

⎢

⎢

⎢

⎢

⎣

pizza

CRUST thick

TOPPINGS

[

OLIVES +

HAM −

]

⎤

⎥

⎥

⎥

⎥

⎦

&

⎡

⎢

⎢

⎣

pizza

TOPPINGS

[

OLIVES +

ONIONS +

]

⎤

⎥

⎥

⎦

© 2003 CSLI Publications

Combining Constraints

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

pizza

CRUST thick

TOPPINGS

⎡

⎢

⎣

OLIVES +

ONIONS +

HAM −

⎤

⎥

⎦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

© 2003 CSLI Publications

Combining Constraints

⎡

⎢

⎢

⎢

⎢

⎣

pizza

CRUST thick

TOPPINGS

[

OLIVES +

HAM −

]

⎤

⎥

⎥

⎥

⎥

⎦

&

⎡

⎢

⎢

⎢

⎢

⎣

pizza

CRUST thin

TOPPINGS

[

OLIVES +

ONIONS +

]

⎤

⎥

⎥

⎥

⎥

⎦

= φ

© 2003 CSLI Publications

Combining Constraints

⎡

⎢

⎢

⎢

⎢

⎣

pizza

CRUST thick

TOPPINGS

[

OLIVES +

HAM +

]

⎤

⎥

⎥

⎥

⎥

⎦

&

⎡

⎢

⎣

pizza

CRUST thick

TOPPINGS vegetarian

⎤

⎥

⎦

= φ

© 2003 CSLI Publications

Combining Constraints

⎡

⎢

⎢

⎢

⎢

⎣

pizza

CRUST thick

TOPPINGS

[

OLIVES +

HAM −

]

⎤

⎥

⎥

⎥

⎥

⎦

&

⎡

⎢

⎣

pizza

CRUST thick

TOPPINGS vegetarian

⎤

⎥

⎦

= φ

© 2003 CSLI Publications

A New Theory of Pizzas

pizza :

⎡

⎢

⎢

⎣

CRUST
{

thick , thin , stuffed
}

ONE-HALF topping-set

OTHER-HALF topping-set

⎤

⎥

⎥

⎦

© 2003 CSLI Publications

Combining Constraints

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

pizza

ONE-HALF

[

ONIONS +

OLIVES −

]

OTHER-HALF

[

ONIONS −

OLIVES +

]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

pizza

ONE-HALF

[

ONIONS +

OLIVES −

]

⎤

⎥

⎥

⎦

&

⎡

⎢

⎢

⎣

pizza

OTHER-HALF

[

ONIONS −

OLIVES +

]

⎤

⎥

⎥

⎦

=

© 2003 CSLI Publications

Identity Constraints (tags)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

pizza

CRUST thin

ONE-HALF

[

OLIVES 1

ONIONS 2

]

OTHER-HALF

[

OLIVES 1

ONIONS 2

]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

© 2003 CSLI Publications

Combining Constraints

⎡

⎢

⎢

⎢

⎢

⎣

pizza

ONE-HALF 1

[

ONIONS +

OLIVES −

]

OTHER-HALF 1

⎤

⎥

⎥

⎥

⎥

⎦

&

⎡

⎢

⎢

⎣

pizza

OTHER-HALF

[

MUSHROOMS −

OLIVES −

]

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

pizza

ONE-HALF 1

⎡

⎢

⎣

ONIONS +

OLIVES −

MUSHROOMS −

⎤

⎥

⎦

OTHER-HALF 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

© 2003 CSLI Publications

Note
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

pizza

ONE-HALF 1

⎡

⎢

⎣

ONIONS +

OLIVES −

MUSHROOMS −

⎤

⎥

⎦

OTHER-HALF 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

pizza

ONE-HALF 1

OTHER-HALF 1

⎡

⎢

⎣

ONIONS +

OLIVES −

MUSHROOMS −

⎤

⎥

⎦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

© 2003 CSLI Publications

Combining Constraints

⎡

⎢

⎢

⎢

⎢

⎣

pizza

ONE-HALF 1

[

ONIONS +

OLIVES +

]

OTHER-HALF 1 vegetarian

⎤

⎥

⎥

⎥

⎥

⎦

&

⎡

⎢

⎢

⎣

pizza

ONE-HALF

[

SAUSAGE +

HAM −

]

⎤

⎥

⎥

⎦

= φ

Fixing the unwieldy grammar: Agreement

• Awkward CFG analyses

S ! NP sg VP sg

S ! NP pl VP pl

NP sg ! (Det sg) Noun sg

NP pl ! (Det pl) Noun pl

VP sg ! V intrans sg

VP sg ! V trans sg NP sg

VP sg ! V trans sg NP pl

. . .

Fixing the unwieldy grammar: Agreement

• Better, with unification:

S ! NP[AGR

1
] VP[AGR

1
]

NP[AGR

1
] ! (Det[AGR

1
]) Noun[AGR

1
]

VP[AGR

1
] ! V intrans[AGR

1
]

VP[AGR

1
] ! V trans[AGR

1
] NP

VP[AGR

1
] ! V pp trans[AGR

1
] PP

VP[AGR

1
] ! V ditrans[AGR

1
] NP NP

VP[AGR

1
] ! V pp ditrans[AGR

1
] NP PP

. . .

Fixing the unwieldy grammar: Subcategorization

S ! NP[AGR

1
] VP[AGR

1
]

NP[AGR

1
] ! (Det[AGR

1
]) Noun[AGR

1
]

VP[AGR

1
] ! V[AGR

1
, SUBCAT

A
]

A

V[AGR sg, SUBCAT h i] ! sleeps

V[AGR pl, SUBCAT h i] ! sleep

V[SUBCAT h i] ! slept

V[AGR sg, SUBCAT h NP i] ! sees

V[AGR pl, SUBCAT h NP i] ! see

V[SUBCAT h NP i] ! saw

. . .

© 2003 CSLI Publications30

Examples
• wh-questions:

What did you find?
Tell me who you talked to

• relative clauses:
the item that I found
the guy who(m) I talked to

• topicalization:
The manual, I can’t find
Chris, you should talk to.

• easy-adjectives:
My house is easy to find.
Pat is hard to talk to.

© 2003 CSLI Publications31

What these have in common

• There is a ‘gap’: nothing following find and to,
even though both normally require objects.

• Something that fills the role of the element
missing from the gap occurs at the beginning of
the clause.

• We use topicalization and easy-adjectives to
illustrate:
The manual, I can’t find_____
Chris is easy to talk to _____

© 2003 CSLI Publications32

Gaps and their fillers can be far apart:

• The solution to this problem, Pat said that
someone claimed you thought I would never
find____.

• Chris is easy to consider it impossible for anyone
but a genius to try to talk to_____.

☞ That’s why we call them “long distance
dependencies”

© 2003 CSLI Publications33

Fillers often have syntactic properties
associated with their gaps

Him, I haven’t met___.

*He, I haven’t met___.

The scissors, Pat told us ____ were missing.

*The scissors, Pat told us ____ was missing.

On Pat, you can rely___.

*To Pat, you can rely___.

© 2003 CSLI Publications34

Very Rough Sketch of Our Approach

• A feature GAP records information about a
missing constituent.

• The GAP value is passed up the tree by a new
principle.

• A new grammar rule expands S as a filler
followed by another S whose GAP value
matches the filler.

• Caveat: Making the details of this general
idea work involves several complications.

© 2003 CSLI Publications35

A Word with a Non-Empty GAP Value

〈

hand ,

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

word

SYN

⎡

⎢

⎢

⎢

⎢

⎢

⎣

HEAD
[

FORM fin
]

VAL

[

SPR ⟨ 1 ⟩

COMPS ⟨ 3 PP[to] ⟩

]

GAP ⟨ 2 NP[acc] ⟩

⎤

⎥

⎥

⎥

⎥

⎥

⎦

ARG-ST

〈 1 NP
[

CASE nom

AGR non-3sing

]

, 2 , 3

〉

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

〉

© 2003 CSLI Publications36

How We Want GAP to Propagate
S

[

GAP ⟨ ⟩
]

NP
[

GAP ⟨ ⟩
]

S
[

GAP ⟨ NP ⟩
]

Kim NP
[

GAP ⟨ ⟩
]

VP
[

GAP ⟨ NP ⟩
]

we V
[

GAP ⟨ ⟩
]

S
[

GAP ⟨ NP ⟩
]

know NP
[

GAP ⟨ ⟩
]

V(P)
[

GAP ⟨ NP ⟩
]

Dana hates

© 2003 CSLI Publications37

The Head-Filler Rule

[phrase] → 1

[

GAP ⟨ ⟩
]

H

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

HEAD

[

verb

FORM fin

]

VAL

[

SPR ⟨ ⟩

COMPS ⟨ ⟩

]

STOP-GAP ⟨ 1 ⟩

GAP ⟨ 1 ⟩

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Overview

• Problems with CFG

• Feature structures

• Unification

• Agreement

• Subcategorization

• Long-distance Dependencies

• Reading questions

Reading questions

• Feature structures and operations greatly resemble set theory to me with
operations like unification and the idea of subsuming. Where exactly then,
does feature logic and set theory differ?

• What is the application of unification of reentrant structures? Does it mean the
merge of features of different grammars?

• So, are reentrant structures just a tool to make AVMs more compact, or is
there ever any significance to two features sharing the same node?

• I'm somewhat unclear on the significance of reentrancy. What would be an
example of the linguistic use of the sample feature structure at the end of
section 15.1?

Reading questions

• What's the base case of the inductive definition of subsumption at the top of
page 496?

Reading questions

• In section 15.2, how does the unification operator not get confused by the []
value, but instead manages to match the value preceding it (in the example:
"[NUMBER sg] unified with [NUMBER []] = [NUMBER sg])? Could there be a
case in which there are two possibilities, one in which it succeeds, and
another in which it fails?

Reading questions

• On pg 504 and 505 there are two different notations for the verb want. Which
is more commonly used/which is better? I'm also a little lost on what control
information is. (pg 505)

Reading questions

• Can you describe the property of the syntactic structure of English which
allows us to use only the agreement of a Head of the syntactic constituent to
determine the agreement of the whole?

• Verbs like "serve" work for multiple agreement cases: first and second
person, and third person plural (I/we/you/they serve). Would the agreement
structure include this extra information, or is the information stored only
relevant to the specific sentence?

Reading questions

• What's the relationship between feature structures and disambiguation?

• How deep down the rabbit-hole of semantic information do feature structures
go? It's mentioned that they encode basic semantic things, like count / mass,
but do they encode more complicated things?

Reading questions

• Is the addition of constraints to CFGs kind of like "extended" regular
expressions (which made them not regular), or does the addition of
constraints not give any actual power? If so, are CFGs + constraints less,
equally, or more powerful than context-sensitive grammars?

• Feature paths look like FSMs... Are we going to use them again for feature
structures or is it coincidental?

• How are feature structures read and implemented by a machine? It seems like
they are too dense to be used simultaneously or in conjunction with a parser.

Reading questions

• Could feature structure be applied on the structure of the whole sentence?
For example, we could look at the feature of the surrounding words to
determine the meaning of "bank" in a give sentence.

• Are feature structures like this ever used for things like theta-roles, which
encode information which is more semantic but still relevant to syntax. If they
aren't, how are the grammar rules prevented from overgenerating sentences
like "the train ate my desk"?

• Also, are feature structures ever used in applications outside of syntax/
semantics, like phonology?

