
Ling/CSE 472: Introduction to Computational
Linguistics	

5/4/17

Parsing

Reminders

• Revised project plan due tomorrow

• Assignment 4 is available

Overview

• Syntax v. parsing

• Earley

• CKY (briefly)

• Chart parsing (demo)

• Reading questions

• Summary questions

Parsing = making explicit structure that is inherent
(implicit) in natural language strings

• What is that structure?

• Why would we need it?

Parsing

• Given a CFG and a sentence, whether the CFG accepts it, with what and
how many structures, is a mathematical fact

• Given a CFG and a sentence, determining whether the CFG accepts it,
with what and how many structures, is a search problem

• Parsing algorithms can be:

• Top-down or bottom-up

• Breadth-first or depth-first

• “Best”-first or exhaustive

The Earley Parser

• For a sentence of N words, the chart contains N+1 cells.

• Each cell contains a list of states.

• A state consists of: a local subtree (‘edge’), information about the degree
of completion of that subtree, and information about how much of the
string corresponds to the subtree.

• For example (in dotted-rule notation):

• S → •VP, [0, 0]

• NP → Det • Nominal, [1, 2]

• VP → V NP•, [0, 3]

The Earley Chart Parser, Outline

• Add the initial S (gamma → •S, [0,0]) to the chart at position 0.

• Loop, for each of the rest of the cells in the chart:

• If the state is incomplete, and the category to the right of the dot is not
a POS, add (if not redundant) new states to the chart in the current
position for each rule that expands that category. These new states all
have the dot at the beginning of the rule, and a span that starts and
ends at the current position. (PREDICTOR)

The Earley Chart Parser, Outline

• Loop (continued):

• If the state is incomplete, and the category to the right of the dot (‘B’) is
a POS, and B is a possible POS for the next word in the string, add the
rule B → word • (if not redundant) to the next cell in the chart.
(SCANNER)

• If the state is complete (dot all the way to the right), look in the cell
corresponding to the beginning of the current state’s span for states
which are currently seeking a daughter of the same category as the
mother of this state. For each one of those, add a state (if not
redundant) to the current cell, with the dot moved over one, and the
span increased to the end of the current word. (COMPLETER)

The Earley Chart Parser

• In which cell of the chart does one find the spanning edge(s)?

• Is the Earley algorithm top-down or bottom-up?

• Best-first or exhaustive?

• How does it handle ambiguity?

• How does it avoid inefficient re-parsing of subtrees?

• How would this algorithm return the trees?

CKY

CKY

CKY

CKY Parsing

• In which cell of the chart does one find the spanning edge(s)?

• Is the CKY algorithm top-down or bottom-up?

• Best-first or exhaustive?

• How does it handle ambiguity?

• How does it avoid inefficient re-parsing of subtrees?

• How would this algorithm return the trees?

Chart parsing

• -> Demo with LKB

Summary questions

• How is natural language syntax and semantics different from that of
programming languages?

• How does this affect the design of parsing algorithms and parsing systems
more generally?

• How does this affect the application of parsing algorithms?

• How does computational syntax differ from theoretical syntax?

Reading questions

• Earley: How does the Scanner operator identify what parts of speech a
current word can be. I understand that it checks the current word to the left of
the dot against the expectation created by the Predictor operator, but how
does it know if the current word can actually match the expected part of
speech?

• At the top of page 435: "A backtracking approach expands the search space
incrementally by systematically exploring one state at a time. The state
chosen for expansion can be based on simple systematic strategies, such as
depth-first or breadth-first methods..." So breadth-first and depth-first are
both ways of implementing a backtracking strategy? How are "exploring all
possible parse trees in parallel" and backtracking different from breadth-first
and depth-first search, respectively?

Reading questions

• When I was reading the differences between top down parsing methods and
bottom up methods, it seemed clear to me at first that bottom up should
generally work faster as you can eliminate poor options much earlier in the
process (i.e. when you go to combine a set of phrasal categories, you know
what ways they can't work by the rules of the CFG). Is the reason this isn't the
case because of local ambiguity? Because this could create multiple part of
speech tags for the words and thus make us assume an entirely different set
of phrasal categories.

• How does parsing works in case of movement?

Reading questions

• The CKY dynamic parsing method is described as requiring CNF in order to
function, but this also causes problems in practice. What is the process for
correcting these issues?

• I don't quite understand what the text means by CNF complicating semantic
analysis. Does this mean X-bar (that's what CNF is, right?) is bad at semantic
analysis?

• Finally, is there any benefit to using a CNF in the Earley Algorithm or does that
just make the process longer and more convoluted?

Reading questions

• I understand that finite state rule based chunking (pg 452) isn't perfect, but
wouldn't it be possible to end up with a structure that can't be a sentence
(possibly due to words that can fall under multiple part of speech categories)?
If the algorithm outputs something that is definitely false, is there any way to
try to correct it?

• What is the purpose of "chunking", how is it separate from POS tagging, and
why is it useful for parsing, despite lacking the use of recursion?

• What does chunking tell us other than the proportion of certain types of
phrases to others in a sentence?

• Why does partial parsing help with resolving ambiguities?

