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N-grams continued + look-back & review



Overview

• Review: simple n-grams


• Smoothing


• Interpolation


• Backoff


• Practical Issues: Toolkits & Data Formats


• Class-based N-grams


• LM adaptation


• Longer-distance information


• Review/lookback


• Reading questions



N-gram basics

• N-gram models are a way of modeling the probability of a string of words, 
or the probability of the N+1st word being w given words 1-N. 


• Usually in comparison to something ... for example?


• Ideally: 


• Approximated as (bigram version): 
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N-grams and linguistic knowledge

• Is an n-gram model a grammar?


• What kinds of information about a language does it capture?


• What kinds of information about a language does it miss?



Calculating simple (unsmoothed) n-grams

• Bigram probability for a word y given a previous word x: 


• Out of all the times you saw x, in what percentage was it followed by y?


• What’s wrong with this?


• How can it be improved?

P (wn|wn�1) =
C(wn�1wn)

C(wn�1)



Solutions

• Smoothing: redistribute probability mass from seen to unseen n-grams


• Backoff: Use lower-order n-grams when higher-order ones aren’t available


• Interpolation: Use lower-order and higher-order ones together, with 
weights



Smoothing

• Add-one smoothing: Before normalizing the counts, add one to every 
possible n-gram (given vocabulary + <UNK>)


• What’s wrong with this?


• Simple Good-Turing Discounting: Use the count of things observed only 
once (hapax legomena) to estimate the count of the unseen


• missing mass = P(things with freq 0 in training) = hapaxes/all items



Simple Linear Interpolation

• Combine different order N-grams by linear interpolation


• Lambdas must sum to 1. Why?


• How are lambdas set?

P̂ (wn | wn�2wn�1) = �1P (wn | wn�2wn�1)
�2P (wn | wn�1)
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Backoff

• Intuition: Use information from lower-order n-grams only if higher-order 
ones aren’t there


• Because probabilities must sum to 1 over whole model, use discounting to 
get revised probabilities for each n-gram



Practical Issues

• N-gram probabilities get problematic for computation (underflow) because 
they are so small


• Solution: convert to log probabilities, changing multiplication to addition 
and working with numbers that aren’t so small


• Toolkits: This has all been implemented already, so you don’t need to 
reimplement.  


• SRILM: http://www.speech.sri.com/projects/srilm/


• Already on patas: /NLP_TOOLS/ml_tools/lm/srilm/latest

http://www.speech.sri.com/projects/srilm/


Class-based N-grams

• Looking at sequences of word classes, rather than word types


• What kind of classes?


• Manually defined for application domain


• Automatically learned via clustering


• POS (doesn’t help)


• Generally mixed with word-based N-grams



Longer distance information

• Goodman 2006: With a corpus 284 million words, 5-grams improve on 4-
grams, but above that longer n-grams don’t help


• Skip N-grams: N-grams calculated over sequences of words that aren’t 
necessarily contiguous.  


• Why might this help?


• Factored Language Models (Bilmes & Kirchhoff 2003): Represent words as 
bundles of stems + morphological features, then learn N-grams across 
that lattice


• Why might this help?
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Midterm: Tuesday 5/2

• In-class


• Open book, open notes, closed computers, closed internet


• Covers everything so far (except today)


• Write directly on the test paper (no bluebook required)



Midterm: Study guide

• Regular expressions & regular 
languages


• FSTs: graph notation


• FSTs: transition tables


• FSTs & regular relations


• FSTs & phonological rewrite 
rules


• Structure of evaluations in 
compling


• Precision & Recall


• TTS components


• N-grams (but not backoff, 
smoothing etc)



Synthesis

• What is computational linguistics?


• How does it differ from other subfields of CS/Linguistics?


• How is it similar to other subfields of CS/Linguistics?



Formal languages

• A formal language is a set of strings


• Things you can do with a formal language:


• Recognize it


• Parse it


• Generate it



Formal languages

• Where have we encountered formal languages so far?


• What have we studied that does not involve formal languages?



Knowledge bases

• Knowledge bases are encodings of (linguistic) information


• What kinds have we seen so far in this class?


• What are they used for?


• What do they encode?



Reflection

• In what ways has the material covered so far matched your expectations 
for how compling/NLP works?


• In what ways has it been surprising?


• What presuppositions that you brought to the class have been 
challenged?
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Reading questions

• I was hoping to understand why class-based N-grams don't handle part-
of-speech tagging well. Is it due to homographs and the ambiguity of 
certain words?


• Section 4.9.2 mentions class-bassed N-grams, which is stated to be 
useful when you have limited training data. What would happen if you used 
this for a normal/large amount of data? What short coming are there to this 
style?



Reading questions

• I would also like to ask why it is usual with most discounting algorithms to 
treat things with a small raw count as though they were unseen. Wouldn't 
this skew the data by adding artificial weight to the infrequent N-grams, 
and make it so that the probabilities of the frequent ones are smaller than 
they should be? The original point of smoothing was to deal with sparsity, 
and with non-zero counts sparsity doesn't seem as prevalent.


• Laplace smoothing adds 1 to each count: P = (c+1) / (N+V) What if we add 
more than 1, and take this into account in the denominator? i.e. P = (c+2) / 
(N + V*2)  What does the result mean when adding more than or less than 
1 to each count?



Reading questions

• In the fish-related Good-Turing example (pg 102), a single trout had been 
seen, but neither bass nor catfish had been seen. The Good-Turing 
smoothed probability that the next fish is a trout (.037) is smaller than the 
probability that the next fish is either a bass or a catfish (.17). I suppose 
this makes sense because there are two unseen fish. However, the 
probability of the next fish being specifically a catfish is .085 (= .17/2), 
which is still larger than the probability that the next fish is a trout. This 
doesn't make sense, since trout and catfish are single species and a trout 
has already been seen.


• Am I missing something, or is this just a flaw in the model? Is there a way 
around it?



Reading questions

• For Adaption: Is this process essentially using the Web as training data? 
Isn't that dangerous if the wrong data is collected to throw off N-gram 
model?


• For some of the methods for estimating probabilities of unseen things, it 
seems like a lot of work is done to normalize the probabilities. It's 
"necessary" mathematically, but when implementing these methods is the 
normalization that important? If you're only interested in relative 
probabilities, does it matter?



Reading questions

• I am confused by the Good-Turing Discounting. How does it jump from:


• c* = (c+1) * N_{c+1} / N_{c}


• to the missing mass:


• P*_{GT}(things with frequency zero in training) = N_1 / N ?


•  “The perplexity 2H of the language model on a test set is used to 
compare language models”. Can you explain how this is used to compare 
various models?


