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Computational phonology



Announcement: Carriage returns



Overview

• Term projects: timeline


• Representing sounds


• Computational phonology: tasks


• FSTs for phonological rules


• Rule ordering and two-level phonology


• Optimality Theory: OT


• Machine learning of phonological rules


• Next time: TTS



Term projects: Timeline

• 4/21: Plan for final project


• 5/5: Revised plan for final project


• 5/29: Write-up outline + stage 1 results 


• This is Memorial Day, please plan ahead


• 6/1, 6/2: Presentations


• 6/7: Final project (executable + writeup)



Term projects: Specifications

• Evaluated in terms of precision and recall


• Comparison to baseline


• Two or more stage experiment where stage 2 tries to improve on stage 1 
by changing the methodology in some way and measuring against the 
same gold standard (comparative evaluation)


• Must deal with natural language


• The write up is very important



Due 4/21

• Decide if you’ll work alone or with a partner


• Specify: 


• Task to be attempted


• Data to be used


• Means of measuring P & R


• Any additional metrics


• Who will do what (partner projects)



Before 4/18

• Be in contact with us (David, Emily) about your ideas, so we can help 
make sure they are feasible


• Use Canvas to discuss


• Explore what data are available:


• https://vervet.ling.washington.edu/db/livesearch-corpus-form.php


• Anything from LDC we can get, if we don’t have it already, but leave 
time for this

https://vervet.ling.washington.edu/db/livesearch-corpus-form.php
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Computational phonology: Representing sounds

• Orthographic systems are not always transparent representations of 
pronunciation.


• Examples?


• Why/when would we need to know how a word is pronounced?



Phonetics

• The study of the speech sounds of the world’s languages


• Speech sounds can be described by their place and manner of 
articulation, plus some other features (oral/nasal, length, released/
unreleased). [articulatory phonetics]


• Also: acoustic phonetics and perceptual phonetics



Phonetics	

• Alphabetic writing systems represent the speech sounds used to make up 
words, but imperfectly:


• Predictable phonological processes not represented (examples?)


• Historical muddling of systems is common (examples?)


• IPA: An evolving standard with the goal of transcribing the sounds of all 
human languages.


• ARPAbet: A phonetic alphabet designed for American English using only 
ASCII symbols.



Phonological rules

• Much of the distribution of actual speech sounds in any given language is 
predictable.


• Particular phones can be grouped into equivalence classes (allophones) 
that appear in phonologically describable environments.


• Phonological and morphophonological rules relate underlying 
representations to surface forms.


• Computational phonology: What kinds of rules are required to model NL 
phonological systems, and how can they be implemented (with finite-state 
technology or otherwise)?



Computational phonology: Tasks

• Given an underlying form, what is its pronunciation?


• Given a surface form (pronunciation), what is the underlying form?


• Given an underlying (or surface) form, where are the syllable boundaries?


• Given a database of underlying and surface forms, what are the rules that 
relate them?


• Given a transcribed or written but otherwise unannotated corpus, what are 
the morphemes in it (and which ones are different forms of the same 
morpheme)?



SPE/FST rules

• Flapping rule: 


• “accepts any string in which flaps occur in the correct places, and rejects 
strings in which flapping should occur but doesn’t, or in which flapping 
occurs in the wrong environment”


• What strings should we use to test these claims?

/t/ � [dx] / V́ V



Flapping rule as FST

• Fig 11.1, pg 362 of J&M.  “other” is any feasible pair not used elsewhere in 
the transducer; “@” is any symbol not used elsewhere.



Rule ordering

• Rules can feed or bleed each other, but creating or destroying the next 
rule’s environment.


• A long standing issue in phonology is whether rule systems require 
extrinsic ordering, or whether all ordering is intrinsic


• Example: faks+z (‘foxes’)

� � [barred i] / [+sibilant] ˆ z #

/z/ ⇥ [s] / [�voice] ˆ z #



More elaborate rule ordering: Yawelmani Yokuts

• Vowel harmony: suffix vowels agree in backness and roundness with the 
preceding stem vowel, if the vowels are of the same height.


• Lowering: Long high vowels become low.


• Shortening: Long vowels in closed syllables become short.


• Order: Harmony, Lowering, Shortening:


• /?u:t’+it/ → [?o:t’ut]


• /sudu:k+hin/ → [sudokhun]


• How do we know what the underlying forms are?


• How do these examples show that that’s the order?



Modeling rule ordering

• Cascaded or composed FSTs


• But: Most phonological rules are independent of each other.


• Koskenniemi’s two-level rules run in parallel and finesse the issue of 
ordering by potentially referring to both underlying and surface forms.


• Example: Fig. 11.6



More on two level rules

• Two level rules can refer to upper or lower tape (or both) for both left and 
right context.


• Different types of two level rules differentiated by when they apply: a is 
realized as b whenever it appears in the context c d, only in that context, 
always and only, or never.


• XFST allows both approaches. Composing FSTs out of notionally ordered 
rules can be easier for linguists to maintain.



Another approach: Optimality Theory (OT)

• Grammar consists of GEN and EVAL


• GEN takes an underlying form and produces all possible surface forms.


• EVAL consists of a set of ranked constraints and an algorithm for choosing 
the best candidate.


• The best candidate is the one who’s highest constraint violation is lower 
than any of the others. In the case of a tie, the next constraint violations 
are considered.


• Constraints are meant to be universal, ranking language-specific ⇒ 
‘factorial typology’



Example tableau



Implementing OT

• Explicit interpretation of constraints


• GEN: a regular relation (FST)


• EVAL: Cascade the constraints, but with ‘lenient composition’, defined in 
terms of priority union (Karttunen 1998)


• .P. (priority union): Q .P. R = Q | [˜[Q.u] .o. R ]


• ‘Take all mappings from Q and those from R that don’t conflict.’


• .0. (lenient composition): R .0. C = [R .o. C] .P. R


• ‘Compose GEN with a constraint, but for inputs that have no perfect 
output, pass them through unchanged.’



Counting violations

• OT is finite-state under one important condition: There is a finite upper 
bound on the number of violations to be considered.


• The winning candidate is the one with the least violations of the highest-
ranked constraint.


• Lenient composition alone isn’t enough to capture this.


• Instead: separate constraints for each number of violations


• Need to decide ahead of time how many to put in



Counting violations

• “It is curious that violation counting should emerge as the crucial issue that 
potentially pushes optimality theory out of the finite-state domain thus 
making it formally more powerful than rewrite systems and two-level 
models. It has never been presented as an argument against the older 
models that they do not allow unlimited counting. Is the additional power 
an asset or an embarrassment?” (Karttunen 1998, p.11)



Learning Rankings

• Tesar & Smolensky (1993, 1998): Error-Driven Constraint Demotion, learns 
ordinal rankings.


• Boersma (1997, 1998, 2000): Gradual Learning Algorithm learns stochastic 
rankings, can handle optionality and variation, as well as noisy training 
data.



Learning Rules

• Machine learning systems automatically induce a model for some domain, 
given some data and potentially other information.


• Supervised algorithms are given correct answers for some of the data and 
use the answers to induce generalizations to apply to further data.


• Unsupervised algorithms works only from data, plus potentially some 
learning biases.



Learning rules

• Ex: Gildea & Jurafsky (1996) specialize a learning algorithm for a subtype 
of FSTs to learn two-level phonological transducers from a corpus of input/
output pairs.


• Learning biases: Faithfulness and Community



Reading questions

• What is the difference between a cascade and a pipeline?


• Starting on Page 363, reference is made to running multiple replacement rules 
in parallel. I'm having difficulty conceptualizing a way one would implement 
multiple such rules that didn't just involve applying one after the other. What 
exactly does it mean to run these things in parallel? How does the two-level 
model enable this? And do the rules need to be compatible in some way for 
this to work?


• How exactly are the rule operators in two-level morphology (pg 363) useful, 
i.e. how does one go from such rules to an FST? Also, it seems like not much 
definite information is gained from something like a:b=>c__d. Is such an 
expression supposed to be paired with something else, like more rules or a 
probability?



Reading questions

• Are there examples in which processing input in parallel vs. in a cascade with 
respect to a set of topological rules results in different outputs? Or are they 
always the same? 


• The point about putting a syllabification transducer before a morphological 
parsing transducer so that syllabification can be influenced by morphological 
structure was interesting to me. What applications could this setup be used 
in?



Reading questions

• My question is about Optimality Theory. GEN produces all the surface forms, 
EVAL applies constraints to GEN in order of constraint rank. What does it 
mean by "ranked order" of constraints?  How is the order generated? 


• I am a bit confused on the concept of 'lenient composition' and why it would 
be beneficial for it to retain all candidates if no output met the constraint 
(above Fig. 11.10).



Reading questions

• Do markedness constraints play a role in computational optimality theory? 
The book doesn't discuss much about the GEN function and I'm wondering if 
markedness constraints would be included in the GEN function, perhaps they 
would just be more simple because they do not involve the output generated 
from EVAL. 


• The book only seems to list reasons why Stochastic Optimality theory 
(particularly with Gausian distrobutions) is better than Non-Stochastic 
Optimality Theory. Is there any reason to ever implement Non-Stochastic 
Optimality Theory over SOT?


• I am wondering what are the common practices to avoid the program 
converged to a non-optimal state, when we are doing unsupervised learning?


