
Ling/CSE 472: Introduction to Computational
Linguistics	

3/30/17

Regular expressions & Finite State Automata

Overview

• Formal definition of regular languages

• Regular expression examples

• Extension to regular expressions

• Substitution in Python

• Finite state automata

• Recognition with FSA -- pseudocode

• DFSA v. NFSA

• Reading questions

Announcement

• Assignment 1 is posted

• Elizalike.py (version 1) due 4/5 at 10am

• Complete assignment due 4/7 at 11:59pm

Book vs. Lecture

• J&M talk about

• regular expressions in the context of search,

• then FSAs,

• then regular languages

• We’ll do

• regular languages,

• then regular expressions describing regular languages (with an aside
about search)

• then FSAs

Formal languages

• From the point of view of formal languages theory, a language is a set of
strings defined over some alphabet.

• Chomsky hierarchy: a description of classes of formal languages:

• regular < context-free < context-sensitive < all languages

• Languages from a single level in the hierarchy can be described in terms of
the same formal devices.

Three views on the same object

Regular languages can be described by regular expressions and by finite-state
automata.

• Regular language: a set of strings

• Regular expression: an expression from a certain formal language which
describes a regular language

• Finite-state automaton: a simple computing machine which accepts or
generates a regular language

Formal definition of regular languages: symbols

• ϵ is the empty string

• ø is the empty set

• Σ is an alphabet (set of symbols)

• Examples of alphabets:

• Σ = {a,b,!}

• Σ = {c,a,t,d,o,g,f,x}

• Σ = {cat, dog, fox}

• Σ = {1, 3, 5, 7}

Formal definition of regular languages

The class of regular languages over Σ is formally defined as:

• ø is a regular language

• ∀a ∈ Σ ∪ ϵ, {a} is a regular language

• If L1 and L2 are regular languages, then so are:

- L1 · L2 = {xy | x ∈ L1, y ∈ L2} (concatenation)

- L1 ∪ L2 (union or disjunction)

- L1* (Kleene closure)

(Jurafsky & Martin 2009:39)

Examples: Single Character

• Alphabet: Σ = {a}

• Language (set of strings): L = {a}

• Regular expression: /a/

• Finite state machine:

Examples: Disjunction/union

• Alphabet: Σ = {a, b}

• Language (set of strings): {a, b}

• Regular expression: /(a|b)/

• Finite state machine:

• This language/regexp/FSA also reflects the union of two languages: {a} ∪ {b}

Examples: Concatenation

• Σ = {a, b, c, d}

• L = {ac, ad, bc, bd}

• Regular expression: /(a|b)(c|d)/

• Finite state machine:

Examples: Concatenation

• Note: This language/regexp/FSA also reflects the concatenation of two
languages:

• L1 = {a, b} · L2 = {c, d}

Examples: Kleene closure

• Σ = {a, b} (again)

• L = {ϵ, a, b, aa, bb, ab, ba, bb, ...}

• Regular expression: /(a|b)*/

• Finite state machine:

Regular expression examples

• abc

• a|bc

• (a|bb)c

• a[bc]

• a*b

• a?b

• [^a]*th[aeiou]+[a-z]*

• ^a

• ^a.*z$

• \bthe\b

Regular expressions: An extension

• Parentheses allow you to ‘save’ part of a string and access it again.

• In general:

• () creates a group that can be referenced

• \n refers back to the nth group in a regular expression

• For example, to search for repeated words: /([a-z]+)\1 \1/

• That will find any group of one or more lower case alphabetic characters
repeated twice (and separated by a space): ‘I called kitty kitty kitty.’

Regular expressions: An extension

• Note: This extension to Python/Perl/grep/MS “regular expression” syntax
actually takes them beyond the realm of regular expressions in the
Chomsky hierarchy sense.

• The languages generated by “regular expressions” augmented with this
kind of memory device are NOT regular languages, i.e., cannot be
recognized by FSAs.

• Why?

So what are regular expressions good for?

• Search

• Search and replace

• Morphotactics: Defining classes of words as sequences of morphemes

• Chunk parsing: Finding units within running text that satisfy patterns such
as D A* N

Regular expression substitution in Python

• import re

• re.sub(pattern, replacement, string); use r to mark pattern as a regex

• \g<n> references the nth group

Back to FSAs

• An abstract computing machine

• Consists of a set of states (or nodes in a directed graph) and a set of
transitions (labeled arcs in the graph)

• Three kinds of states: plain, start, final

FSA as transition table

• An FSA can also be represented as a transition table:

Recognizing a regular language

FSAs can be used to recognize a regular language.

• Take the FSA and a “tape” with the string to be recognized.

• Start with the start of the tape and the FSA’s start state.

• For each symbol on the tape, attempt to take the corresponding transition in
the machine.

• If no transition is possible: reject.

• When the string is finished, check whether the current state is a final state.

• Yes: accept. No: reject.

Notes on pseudocode

• Some basic components of algorithms:

• Loops (e.g., while x is true; for every x in …)

• Conditionals (e.g., if … do this, else do this)

• Variable assignment (e.g., i = i+1)

• Evaluating expressions (e.g. if x = 2, print x + 3)

• Input values

D-RECOGNIZE in pseudo-code

Non-deterministic FSA (NFSA)

• The FSAs considered so far are deterministic (DFSA): there is only one
choice at each node.

• NFSAs include more than one choice at (at least) one node.

• Those choices might include ϵ-transitions, i.e., unlabeled arcs that allow
one to jump from one node to another without reading any input.

• Note: Any NFSA can be rewritten as a DFSA.

Equivalent (D)FSA and NFSA

Problem with Non-determinism

• Non-determinism can lead to dead ends when recognizing strings. How?

• Types of solutions:

• backup

• look-ahead

• parallelism

• The backup technique is essentially to record a search-state at each
decision point consisting of the position on the input tape and the state
(node) of the machine. Then paths to dead ends can be retraced and
different decisions made.

• What’s the use/point of NFSAs, if there’s always an equivalent DFSA?

Overview

• Formal definition of regular languages

• Regular expression examples

• Extension to regular expressions

• Substitution in Python

• Finite state automata

• Recognition with FSA -- pseudocode

• DFSA v. NFSA

• Reading questions

Reading Questions

• What are the minimal set of symbols needed for defining regex?

• Concatenation, disjunction, *

• What's the point of .* if it will match any string?

• What's the point of * -- when do you ever want 0 instances of something?

• What's the difference between an "accepting state" and a "final state"?

Reading Questions

• What makes one of the sheep talk FSAs deterministic but not the other?

• What are automata and how do they work? Why is that so abstract rather
than describing a particular implementation?

• What's the difference between FSAs and regular expressions?

Reading Questions

• Does the regular expression /the dog/ locate patterns that look like “dog
the”? Is there any way to write a regular expression that says “give me any
strings where all of these certain words show up in any order, anywhere in the
string”?

• How would you to regular expressions in other alphabets?

• The alphabets used to define automata are particularly interesting to me. In
particular, I wonder what restrictions exist on the contents of these alphabets.
Can we have an alphabet of grammar structures at all levels? That is, could
we have an alphabet with syntactic structures as well as morphological
structures, or will the automaton only test for same-level structures? Is there
room for a precedence of sorts, or would these two analyses require separate
automata?

Reading Questions

• For the list of operations under which regular languages are closed, why is it
important (rather than just interesting) that the reversal is also regular? Also,
are there any other important operations or ways of combining regular
languages?

