
Ling/CSE 472: Introduction to Computational
Linguistics	

5/13/15
Feature structures and unification

Overview

• Problems with CFG

• Feature structures

• Unification

• Agreement

• Subcategorization

• Long-distance Dependencies

• Reading questions

Problems with CFG (with atomic node labels)

• Simple rules, with simple category sets overgenerate:

• What are some non-sentences that this CFG licenses?

S ! NP VP

NP ! (Det) Noun

VP ! Verb (NP) (NP|PP)
PP ! Prep NP

Noun ! cat, cats, dog, dogs, I, you, we, they, he, she, it

Det ! the, a, this, these, some, many

Verb ! bark, barks, barked, am, is, are, was, were,

rely, relies, see, sees, saw

Prep ! on, in, above, before

Problems with CFG (with atomic node labels)

• How could that be fixed, using the CFG formalism?

S ! NP sg VP sg

S ! NP pl VP pl

NP sg ! (Det sg) Noun sg

NP pl ! (Det pl) Noun pl

VP sg ! V intrans sg

VP sg ! V trans sg NP sg

VP sg ! V trans sg NP pl

. . .

Generalized Phrase Structure Grammar (GPSG)

• Gazdar et al 1982

• Added feature structures to CFG, but stayed CFG-equivalent

• Eventually, it became generally accepted that natural languages are in fact
not context free

• GPSG generalized to HPSG (Pollard & Sag 1994)

Feature Structures

• Break ‘atomic’ symbols like ‘V_intrans_sg’ into bundles of information

• Allows for the statement of cross-cutting generalizations

denies deny

disappears disappear

3rd singular subject

direct object NP

no direct object NP

plural subject

Attribute value matrices










FEATURE1 VALUE1

FEATURE2 VALUE2

. . .

FEATUREn VALUEn











• Values can be atomic symbols, or feature structures in their own right.

Unification

• Test whether two feature structures are compatible

• If so, find the most general feature structure that includes all information from
both

• Section 15.2 shows unification of untyped feature structures

• Pizza examples (following) add in types (see 15.6)

© 2003 CSLI Publications

A Pizza Type Hierarchy
pizza-thing

pizza
[

CRUST,

TOPPINGS

]

topping-set








OLIVES,

ONIONS,

MUSHROOMS









vegetarian

non-vegetarian






SAUSAGE,

PEPPERONI,

HAM







© 2003 CSLI Publications

TYPE FEATURES/VALUES IST
pizza-thing

pizza pizza-thing

topping-set pizza-thing

vegetarian topping-set

non-
vegetarian topping-set





CRUST
{

thick, thin, stuffed
}

TOPPINGS topping-set











OLIVES
{

+, −
}

ONIONS
{

+, −
}

MUSHROOMS
{

+, −
}













SAUSAGE
{

+, −
}

PEPPERONI
{

+, −
}

BBQ CHICKEN
{

+, −
}







HAM

© 2003 CSLI Publications

A type hierarchy....

• ... states what kinds of objects we claim exist (the
types)

• ... organizes the objects hierarchically into classes
with shared properties (the type hierarchy)

• ... states what general properties each kind of object
has (the feature and feature value declarations).

Type Hierarchies

© 2003 CSLI Publications

Pizza Descriptions and Pizza Models
















pizza

CRUST thick

TOPPINGS







vegetarian

OLIVES +

ONIONS +























How many pizza models (by definition, fully
resolved) satisfy this description?

© 2003 CSLI Publications

Answer: 2
















pizza

CRUST thick

TOPPINGS







vegetarian

OLIVES +

ONIONS +























{<CRUST , thick> , <TOPPINGS , { <OLIVES ,
+ > , <ONIONS, +> , <MUSHROOMS, −>}>}

{<CRUST , thick> , <TOPPINGS , { <OLIVES ,
+ > , <ONIONS, +> , <MUSHROOMS, +>}>}

© 2003 CSLI Publications

Pizza Descriptions and Pizza Models
















pizza

CRUST thick

TOPPINGS







vegetarian

OLIVES +

ONIONS +























© 2003 CSLI Publications

Pizza Descriptions and Pizza Models
















pizza

CRUST thick

TOPPINGS







vegetarian

OLIVES +

ONIONS +























How many pizzas-in-the-world do the pizza
models correspond to?

© 2003 CSLI Publications

Pizza Descriptions and Pizza Models
















pizza

CRUST thick

TOPPINGS







vegetarian

OLIVES +

ONIONS +























How many pizzas-in-the-world do the pizza
models correspond to?

Answer: A large, constantly-changing number.

© 2003 CSLI Publications

Pizza Descriptions and Pizza Models
















pizza

CRUST thick

TOPPINGS







vegetarian

OLIVES +

ONIONS +























‘type’/‘token’ distinction
applies to sentences as well

© 2003 CSLI Publications

Combining Constraints













pizza

CRUST thick

TOPPINGS

[

OLIVES +

HAM −

]













&









pizza

TOPPINGS

[

OLIVES +

ONIONS +

]









© 2003 CSLI Publications

Combining Constraints

















pizza

CRUST thick

TOPPINGS







OLIVES +

ONIONS +

HAM −























© 2003 CSLI Publications

Combining Constraints













pizza

CRUST thick

TOPPINGS

[

OLIVES +

HAM −

]













&













pizza

CRUST thin

TOPPINGS

[

OLIVES +

ONIONS +

]













© 2003 CSLI Publications

Combining Constraints













pizza

CRUST thick

TOPPINGS

[

OLIVES +

HAM −

]













&













pizza

CRUST thin

TOPPINGS

[

OLIVES +

ONIONS +

]













= φ

© 2003 CSLI Publications

Combining Constraints













pizza

CRUST thick

TOPPINGS

[

OLIVES +

HAM +

]













&







pizza

CRUST thick

TOPPINGS vegetarian







© 2003 CSLI Publications

Combining Constraints













pizza

CRUST thick

TOPPINGS

[

OLIVES +

HAM +

]













&







pizza

CRUST thick

TOPPINGS vegetarian







= φ

© 2003 CSLI Publications

Combining Constraints













pizza

CRUST thick

TOPPINGS

[

OLIVES +

HAM −

]













&







pizza

CRUST thick

TOPPINGS vegetarian







© 2003 CSLI Publications

Combining Constraints













pizza

CRUST thick

TOPPINGS

[

OLIVES +

HAM −

]













&







pizza

CRUST thick

TOPPINGS vegetarian







= φ

© 2003 CSLI Publications

A New Theory of Pizzas

pizza :









CRUST
{

thick , thin , stuffed
}

ONE-HALF topping-set

OTHER-HALF topping-set









© 2003 CSLI Publications

Combining Constraints

© 2003 CSLI Publications

Combining Constraints









pizza

ONE-HALF

[

ONIONS +

OLIVES −

]









&









pizza

OTHER-HALF

[

ONIONS −

OLIVES +

]









=

© 2003 CSLI Publications

Combining Constraints



















pizza

ONE-HALF

[

ONIONS +

OLIVES −

]

OTHER-HALF

[

ONIONS −

OLIVES +

]



























pizza

ONE-HALF

[

ONIONS +

OLIVES −

]









&









pizza

OTHER-HALF

[

ONIONS −

OLIVES +

]









=

© 2003 CSLI Publications

Identity Constraints (tags)























pizza

CRUST thin

ONE-HALF

[

OLIVES 1

ONIONS 2

]

OTHER-HALF

[

OLIVES 1

ONIONS 2

]























© 2003 CSLI Publications

Combining Constraints













pizza

ONE-HALF 1

[

ONIONS +

OLIVES −

]

OTHER-HALF 1













&









pizza

OTHER-HALF

[

MUSHROOMS −

OLIVES −

]









© 2003 CSLI Publications

Combining Constraints













pizza

ONE-HALF 1

[

ONIONS +

OLIVES −

]

OTHER-HALF 1













&









pizza

OTHER-HALF

[

MUSHROOMS −

OLIVES −

]

























pizza

ONE-HALF 1







ONIONS +

OLIVES −

MUSHROOMS −







OTHER-HALF 1

















=

© 2003 CSLI Publications

Note
















pizza

ONE-HALF 1







ONIONS +

OLIVES −

MUSHROOMS −







OTHER-HALF 1

















=
















pizza

ONE-HALF 1

OTHER-HALF 1







ONIONS +

OLIVES −

MUSHROOMS −























© 2003 CSLI Publications

Combining Constraints













pizza

ONE-HALF 1

[

ONIONS +

OLIVES +

]

OTHER-HALF 1 vegetarian













&









pizza

ONE-HALF

[

SAUSAGE +

HAM −

]









© 2003 CSLI Publications

Combining Constraints













pizza

ONE-HALF 1

[

ONIONS +

OLIVES +

]

OTHER-HALF 1 vegetarian













&









pizza

ONE-HALF

[

SAUSAGE +

HAM −

]









= φ

Fixing the unwieldy grammar: Agreement

• Awkward CFG analyses

S ! NP sg VP sg

S ! NP pl VP pl

NP sg ! (Det sg) Noun sg

NP pl ! (Det pl) Noun pl

VP sg ! V intrans sg

VP sg ! V trans sg NP sg

VP sg ! V trans sg NP pl

. . .

Fixing the unwieldy grammar: Agreement

• Better, with unification:

S ! NP[AGR

1
] VP[AGR

1
]

NP[AGR

1
] ! (Det[AGR

1
]) Noun[AGR

1
]

VP[AGR

1
] ! V intrans[AGR

1
]

VP[AGR

1
] ! V trans[AGR

1
] NP

VP[AGR

1
] ! V pp trans[AGR

1
] PP

VP[AGR

1
] ! V ditrans[AGR

1
] NP NP

VP[AGR

1
] ! V pp ditrans[AGR

1
] NP PP

. . .

Fixing the unwieldy grammar: Subcategorization

S ! NP[AGR

1
] VP[AGR

1
]

NP[AGR

1
] ! (Det[AGR

1
]) Noun[AGR

1
]

VP[AGR

1
] ! V[AGR

1
, SUBCAT

A
]

A

V[AGR sg, SUBCAT h i] ! sleeps

V[AGR pl, SUBCAT h i] ! sleep

V[SUBCAT h i] ! slept

V[AGR sg, SUBCAT h NP i] ! sees

V[AGR pl, SUBCAT h NP i] ! see

V[SUBCAT h NP i] ! saw

. . .

© 2003 CSLI Publications30

Examples
• wh-questions:

What did you find?
Tell me who you talked to

• relative clauses:
the item that I found	

the guy who(m) I talked to

• topicalization:
The manual, I can’t find	

Chris, you should talk to.

• easy-adjectives:
My house is easy to find.
Pat is hard to talk to.

© 2003 CSLI Publications31

What these have in common

• There is a ‘gap’: nothing following find and to,
even though both normally require objects.

• Something that fills the role of the element
missing from the gap occurs at the beginning of
the clause.

• We use topicalization and easy-adjectives to
illustrate:
The manual, I can’t find_____	

Chris is easy to talk to _____

© 2003 CSLI Publications32

Gaps and their fillers can be far apart:

• The solution to this problem, Pat said that
someone claimed you thought I would never
find____.

• Chris is easy to consider it impossible for anyone
but a genius to try to talk to_____.

☞ That’s why we call them “long distance
dependencies”

© 2003 CSLI Publications33

Fillers often have syntactic properties
associated with their gaps

Him, I haven’t met___.

*He, I haven’t met___.

The scissors, Pat told us ____ were missing.

*The scissors, Pat told us ____ was missing.

On Pat, you can rely___.

*To Pat, you can rely___.

© 2003 CSLI Publications34

Very Rough Sketch of Our Approach

• A feature GAP records information about a
missing constituent.

• The GAP value is passed up the tree by a new
principle.

• A new grammar rule expands S as a filler
followed by another S whose GAP value
matches the filler.

• Caveat: Making the details of this general
idea work involves several complications.

© 2003 CSLI Publications35

A Word with a Non-Empty GAP Value

〈

hand ,





































word

SYN















HEAD
[

FORM fin
]

VAL

[

SPR 〈 1 〉

COMPS 〈 3 PP[to] 〉

]

GAP 〈 2 NP[acc] 〉















ARG-ST

〈 1 NP
[

CASE nom

AGR non-3sing

]

, 2 , 3

〉





































〉

© 2003 CSLI Publications36

How We Want GAP to Propagate
S

[

GAP 〈 〉
]

NP
[

GAP 〈 〉
]

S
[

GAP 〈 NP 〉
]

Kim NP
[

GAP 〈 〉
]

VP
[

GAP 〈 NP 〉
]

we V
[

GAP 〈 〉
]

S
[

GAP 〈 NP 〉
]

know NP
[

GAP 〈 〉
]

V(P)
[

GAP 〈 NP 〉
]

Dana hates

© 2003 CSLI Publications37

The Head-Filler Rule

[phrase] → 1

[

GAP 〈 〉
]

H























HEAD

[

verb

FORM fin

]

VAL

[

SPR 〈 〉

COMPS 〈 〉

]

STOP-GAP 〈 1 〉

GAP 〈 1 〉























Overview

• Problems with CFG

• Feature structures

• Unification

• Agreement

• Subcategorization

• Long-distance Dependencies

• Reading questions

Reading questions

• I know what regular and non-regular grammars are, but what makes a
grammar context-free?

• There is a distinction made between right and left linear grammar, but I don't
really understand why this distinction is too important; is it just for the sake of
writing proofs? Shouldn't there also be consideration for terminals appearing
on both the left, right and the middle?

Reading questions

• I was not really clear about the two forms of specified constraints:

• <Bi feature path> = Atomic value

• <Bi feature path> = <Bi feature path>

• How should I understand these two forms? Also, "the notation <Bi feature
path> denotes a feature path through the feature structure associated with
the Bi component of the context-free part of the rule", this sentence seems
helpful for understanding the forms but it is really confusing to me, how
should I understand it?

Reading questions

• I'm confused as to how the feature system saves you very much from a
proliferation of grammar rules. Don't you still have to write separate grammar
rules for each form of each feature?

• Does the order of the features in the attribute-value matrix matter? In the
readings, some have [PERSON 3, then NUMBER sg] while others have
[NUMBER sg, then PERSON 3]. There is one example on pg 495 where after
unification, [PERSON 3, NUMBER sg] becomes [NUMBER sg, PERSON 3]. Do
the order differ because of which is more significant or are they just random?

• I'm confused as to how auxiliaries function in these agreement patterns. It seems
that auxiliaries take away some of the agreement functionality of the main verbs-
in the sentence "He is running," only "is" has 3rd / sg agreement features, not
the main verb "running". How would it look for full agreement functionality to be
written out for a sentence with an auxiliary?

Reading questions

• I was wondering how feature structures tend to vary with the "type" of
language. Would word order based languages lead to more, smaller feature
structures, and polysynthetic languages lead to fewer, larger feature
structures?

• How do feature structures work in analyzing transcriptions of natural speech?
Often times, when we talk to one another, we'll leave out dependencies
because they are included in wider context. Can feature structures account
for this?

Reading questions

• Is the gap list in long distance dependencies the reason we saw the stacked
NP's and such in the parse tree we saw in class on Tuesday?

• How are feature structures encoded? Do they have to be designed by hand
for each word? Have there been attempts to use machine learning to deduce
argument structures for verbs, for example?

