
Ling/CSE 472: Introduction to Computational
Linguistics	

5/16/12
Statistical Parsing

Overview

• Why statistical parsing?

• PCFGs

• Estimating rule probabilities

• Probabilistic CKY

• Ways to improve PCFG

• Evaluation

Why statistical parsing?

• Parsing = making explicit structure that is inherent (implicit) in natural
language strings

• Useful for: language modeling + any app that needs access to the meaning of
sentences

• Most application scenarios that use parser output want just one parse

• Have to choose among all the possible analyses

• Most application scenarios need robust parsers

• Need some output for every input, even if its not grammatical

PCFGs

• N: a set of non-terminal symbols

• Σ: a set of terminal symbols (disjoint from N)

• R: a set of rules, of the form A -> β [p]

• A: non-terminal

• β: string of symbols from Σ or N

• p: probability of β given A

• S: a designated start symbol

PCFGs

• How does this differ from CFG?

• How do we use it to calculate the probability of a parse?

• The probability of a sentence?

• What assumptions does that require?

PCFGs

• How does this differ from CFG? -- added probability to each rule

• How do we use it to calculate the probability of a parse? -- multiply
probability of each rule used (= P(T|S) = P(T))

• The probability of a sentence? -- sum of probability of all trees

• What assumptions does that require? -- expansion of a node does not
depend on the context

PCFGs: Why

• When would you want to know the probability of a parse?

• When would you want to know the probability of a sentence?

How to estimate the rule probabilities

• Get a Treebank

• Gather all instances of each non-terminal

• For each expansion of the non-terminal (= rule), count how many times it
occurs

P (α → β | α) = Count(α → β)

Count(α)

Using the probabilities for best-first parsing

• Probabilistic CKY: in each cell, store just the most probable edge for each
non-terminal

• Probabilities based on rule probability plus daughter edge probabilities

Work through an example:
Kim adores snow in Oslo

S → NP VP [.8] NOM | NP → Kim [.01]
VP → V NP [.2] NOM | NP → snow [.01]
VP → VP PP [.3] NOM | NP → Oslo [.01]
PP → P NP [.9] V | VP → adores [.02]
NP → NOM PP [.2] V | VP → snores [.01]

P → in [.1]

Why statistical parsing? (reprise)

• Most application scenarios that use parser output want just one parse

• Have to choose among all the possible analyses

• How does PCFG solve this problem?

• Most application scenarios need robust parsers

• Need some output for every input, even if its not grammatical

• How does PCFG solve this problem?

Problems with PCFG

• Independence assumption is wrong

• What does “independence assumption” mean?

• What is the evidence that it’s wrong?

• Not sensitive to lexical dependencies

• What does that mean?

Ways to improve PCFGs

• Split the non-terminals

• Rename each non-terminal based on its parent (NP-S vs. NP-VP)

• Hand-written rules to split pre-terminal categories

• Automatically search for optimal splits through split and merge algorithm

• Lexicalized PCFGs: add identity of lexical head to each node label

• Data sparsity problem -> smoothing again

Evaluating parsing

• How would you do extrinsic evaluation of a parsing system?

• How would you do intrinsic evaluation?

• Gold standard data?

• Metrics?

Gold-standard data

• There’s no ground truth in trees

• Semantic dependencies might be easier to get cross-framework agreement
on, but even there it’s non-trivial

• The Penn Treebank (Marcus et al 1993) was originally conceived of as a target
for cross-framework parser evaluation

• For project-internal/regression testing, grammar-based treebanking is
effective for creating (g)old-standard data

Parseval measures

• Labeled precision:

• Labeled recall:

• Constituents defined by starting point, ending point, and non-terminal
symbol of spanning node

• Cross brackets: average number of constituents where the phrase boundaries
of the gold standard and the candidate parse overlap

• Example overlap: ((A B) C) v. (A (B C))

of correct constituents in candidate parse

total # of constituents in gold standard parse

�
��
������
	
�����	�
�	��	���������
�
�
����
��
	
�����	�
�	��	���������
�

