
Finite State Morphological
Parsing

April 6, 2011

Overview

•  Review: Finite state methods in morphology
•  Ambiguity
•  XFST demo
•  FSTs for spelling change rule
•  Lexicon-free morphology
•  Detection and correction of spelling errors

Review: FSAs and FSTs
•  FSAs define sets of strings (regular languages).
•  FSTs define sets of ordered pairs of strings

(regular relations).
•  Formally interesting because not all languages/

relations can be defined by FSAs/FSTs.
•  Are all finite languages and relations regular?
•  Linguistically interesting because:
–  FSAs have enough power for morphotactics.
–  FSTs have (almost) enough power for

morphophonology.
– Both are very efficient.

FSTs: Quiz

•  Why do FSTs have complex symbols labeling
the arcs?

•  What happens if you give an FST an input on
only one “tape”?

•  What happens if the input has symbols outside
the FST’s alphabet?

•  Do the upper and lower tape strings always
have the same length?

Recall this FST

J&M text, Fig. 3.14

Cascade with an FST to handle
spelling

•  A spelling change rule would insert an e only in the
appropriate environment:

ϵ e / {x,s,z}^ ___s#

J&M text, Fig 3.16
•  Note that you can read down from the top tape or
up from the bottom tape.

Sample e-insertion FST

J&M text, fig. 3.17

The idea is to add e only in the proper environments
while letting all other sequences pass through.

•  But it is not necessary to hand-write FSTs like this.
•  Many tools are available that compile FSTs from rules.

A Few Words about Ambiguity

•  Ambiguity can be an issue in parsing;
•  Example: foxes
–  fox can be a noun or a verb
–  the affix s can mark plural or 3rd sg present tense

•  This kind of ambiguity (global) cannot be
resolved with a transducer.

•  However, transducer design must handle local
ambiguity such as whether the e in the string asse
is an inserted e (asses) or part of a stem (assess).

Xerox Finite-State Tool (xfst)
•  Karttunen, Gaál & Kempe, 1997
•  http://www.cis.upenn.edu/~cis639/docs/xfst.html
•  Abstract: “Xerox finite-state tool is a general-

purpose utility for computing with finite-state
networks. It enables the user to create simple
automata and transducers from text and binary
files, regular expressions and other networks by a
variety of operations. The user can display,
examine and modify the structure and the content
of the networks. The result can be saved as text or
binary files.”

XFST syntax
* = Kleene *!
+ = Kleene +!
0 = epsilon (empty string)
% = escape character
⎵ (space) = concatenation
\ = negation
| = disjunction
() = optionality
? = wild card
[] = grouping

A note on ?

•  In regular expressions, it’s ANY.
•  In arc labels, it’s UNKNOWN … any symbol not

otherwise represented in the FST.
•  xfst takes a regular expression and returns an

FST so note that ? means something slightly
different character in each. !

XFST demo
•  Concatenation
•  Kleene *, Kleene +
•  Symbol pairs (‘:’)
•  Iteration
•  Wildcard
•  +-removal
•  Composition
•  Apply up, apply down
•  Print upper, print lower
•  Print net

Spelling change rule FST 1

define Rule1 [?* e:0 %+:0 [e|i] ?*];

•  Draw an FST corresponding to Rule1.
•  What are the upper and lower languages of

Rule1?
•  What linguistic work is this rule supposed to

do?
•  If the upper tape has expect+ed, what goes

on the lower tape?

Spelling change rule FST 2
define Rule2 [[?* e:0 %+:0 [e|i] ?*] |
 [?* e %+:0 (\[e|i])] |
 [?* \e %+ ?*] |
 [\[%+]*]]

•  What are the upper and lower languages of Rule2?
•  What linguistic work is each part of this rule supposed

to do?
•  If the upper tape has expect+ed, what goes on the lower

tape?
•  If the upper tape has write+ing, what goes on the lower

tape?

What if you don’t have a lexicon?

•  Why might you not have a (big enough) lexicon?

•  Why might you still want to do morphological parsing?

•  The Porter stemmer is a cascade of rewrite affixation
rules sensitive to orthographic properties of words, but
without knowledge of any particular lexicon.

•  Robust systems combine lexicon-based morphological
parsing with techniques for handling unknown words.
E.g., Chasen – morpological parser of Japanese text.

Detection and correction of spelling
errors

•  Integral part of many word processors and
search engines

•  Important for correcting errors in OCR and
handwriting recognition

•  Three problems (in order of difficulty):
– Non-word error detection
–  Isolated-word error correction
– Context-dependent error detection and correction

(including real-word errors)

FSAs as spell-check dictionaries

•  Non-word error detection is usually based on a
large dictionary.

•  An FST morphological parser is inherently a word
recognizer.

•  An FSA recognizer can be made by projecting the
lower tape from an FST morphological parser.

•  Non-word error correction algorithms use some
form of distance metric to select between possible
word candidates.

Overview

•  Review: Finite state methods in morphology
•  Ambiguity
•  XFST demo
•  FSTs for spelling change rule
•  Lexicon-free morphology
•  Detection and correction of spelling errors

