Finite State Morphological
Parsing

April 6, 2011

Overview

Review: Finite state methods in morphology
Ambiguity

XFST demo

FSTs for spelling change rule

Lexicon-free morphology

Detection and correction of spelling errors

Review: FSAs and FSTs

FSAs define sets of strings (regular languages).

FSTs define sets of ordered pairs of strings
(regular relations).

Formally interesting because not all languages/
relations can be defined by FSAs/FSTs.

Are all finite languages and relations regular?

Linguistically interesting because:
— FSAs have enough power for morphotactics.

— FSTs have (almost) enough power for
morphophonology.

— Both are very efficient.

FSTs: Quiz

Why do FSTs have complex symbols labeling
the arcs?

What happens if you give an FST an input on
only one “tape”?

What happens if the input has symbols outside
the FST’s alphabet?

Do the upper and lower tape strings always
have the same length?

Recall this FST

2 : +Pl
0 o) @ X

@)

O
Q

@ @T@#

g 0 0 S e +N +Sg
g oOo>Os>:e € # @
+P|

o) o) S e +N
OO0 0

e

J&M text, Fig. 3.14

Cascade with an FST to handle
spelling

* A spelling change rule would insert an € only 1n the
appropriate environment:

€_ e/ {xs8,z}" s#

Lexical 3 flo| x|+N|+PI f
Intermediate § flo|x|™M|s|# f
Surface § flo|x|e|s f

J&M text, Fig 3.16
* Note that you can read down from the top tape or

up from the bottom tape.

Sample e-insertion FST

The 1dea 1s to add e only 1n the proper environments
while letting all other sequences pass through.

other

J&M text, fig. 3.17

* But it 1s not necessary to hand-write FSTs like this.
* Many tools are available that compile FSTs from rules.

A Few Words about Ambiguity

Ambiguity can be an issue in parsing;

Example: foxes
— fox can be a noun or a verb
— the affix s can mark plural or 3" sg present tense

This kind of ambiguity (global) cannot be
resolved with a transducer.

However, transducer design must handle local
ambiguity such as whether the e 1n the string asse
1s an 1nserted e (asses) or part of a stem (assess).

Xerox Finite-State Tool (xfst)

* Karttunen, Gaal & Kempe, 1997
* http://www.cis.upenn.edu/~c1s639/docs/xfst.html

* Abstract: “Xerox finite-state tool 1s a general-
purpose utility for computing with finite-state
networks. It enables the user to create simple
automata and transducers from text and binary
files, regular expressions and other networks by a
variety of operations. The user can display,
examine and modify the structure and the content

of the networks. The result can be saved as text or
binary files.”

XFST syntax

* = Kleene *

+ = Kleene +

0 = epsilon (empty string)
% = escape character

. (space) = concatenation
\ = negation

| = disjunction
() = optionality
? = wild card

[1 = grouping

A note on ??

* In regular expressions, it’s ANY.

* In arc labels, 1t’s UNKNOWN ... any symbol not
otherwise represented in the FST.

* xfst takes a regular expression and returns an
FST so note that ? means something slightly
different character in each.

XEFST demo

Concatenation

Kleene *, Kleene +
Symbol pairs (‘:’)
[teration

Wildcard

+-removal
Composition

Apply up, apply down
Print upper, print lower
Print net

Spelling change rule FST 1

define Rulel [?2* e:0 %+:0 [el|dl] ?2*];

Draw an FST corresponding to Rulel.

What are the upper and lower languages of
Rulel?

What linguistic work 1is this rule supposed to
do?

If the upper tape has expect+ed, what goes
on the lower tape?

Spelling change rule FST 2

define Rule2 [[?* e:0 %+:0 [e|1] ?2*] |
[?2* e $+:0 (\[eli])] |
[2* \e %+ 2*] |
[\N[B+]*]]

* What are the upper and lower languages of Rule2?

* What linguistic work 1s each part of this rule supposed
to do?

 If the upper tape has expect+ed, what goes on the lower
tape?

 If the upper tape has write+ing, what goes on the lower
tape?

What if you don 't have a lexicon?

Why might you not have a (big enough) lexicon?
Why might you still want to do morphological parsing?

The Porter stemmer 1s a cascade of rewrite affixation
rules sensitive to orthographic properties of words, but
without knowledge of any particular lexicon.

Robust systems combine lexicon-based morphological
parsing with techniques for handling unknown words.
E.g., Chasen — morpological parser of Japanese text.

Detection and correction of spelling
errors

* Integral part of many word processors and
search engines

* Important for correcting errors in OCR and
handwriting recognition

e Three problems (in order of difficulty):
— Non-word error detection
— Isolated-word error correction

— Context-dependent error detection and correction
(including real-word errors)

FSAs as spell-check dictionaries

Non-word error detection 1s usually based on a
large dictionary.

An FST morphological parser 1s inherently a word
recognizer.

An FSA recognizer can be made by projecting the
lower tape from an FST morphological parser.

Non-word error correction algorithms use some
form of distance metric to select between possible
word candidates.

Overview

Review: Finite state methods in morphology
Ambiguity

XFST demo

FSTs for spelling change rule

Lexicon-free morphology

Detection and correction of spelling errors

