
Chapter 3
Finite State Morphological Parsing

April 4, 2011

Overview

•  Morphology primer
•  Using FSAs to recognize morphologically

complex words
•  FSTs (definition, cascading, composition)
•  FSTs for morphological parsing
•  Next time: More on FSTs, morphological

analysis and an XFST demo

Morphology Primer

•  Words consist of stems and affixes.
•  Affixes may be prefixes, suffixes, circumfixes

or infixes.
 Examples?

•  (Also: root and pattern morphology)
 Examples?

•  Phonological processes can sometimes apply
to combinations of morphemes.

Phonology at Morpheme Boundaries
Examples:

English Spanish
Singular Plural Singular Plural
[kæt]
‘cat’

[kæts]
‘cats’

[ninjo]
Eng: ‘boy’

[ninjos]

[dɑg]
‘dog’

[dɑgz]
‘dogs’

[fɪnʧ]
‘finch’

[fɪnʧəәz]
‘finches’

[kaɾakol]
Eng: ‘snail’

[kaɾakoles]

/s/ /s/

More on Morphology

•  Languages vary in the richness of their
morphological systems.

•  Languages also vary in the extent to which
phonological processes apply at (and
sometimes blur) morpheme boundaries.

•  English has relatively little inflectional
morphology, but fairly rich (if not perfectly
productive) derivational morphology.

•  Turkish has more than 200 billion word forms.

Questions

•  More examples of complex morphemes?
•  What underlying representations might we

want?
•  Why would we want to get to those underlying

representations?
•  How do things change when we consider

orthographic rules rather than phonological
rules?

Morphological Parsing

•  Parsing: Producing a linguistic structure for an
input.

•  Examples of morphological parsing:
– Separating words into stems/roots and affixes

 e.g., input: cats parse output: cat +s
– Labeling morphemes with category labels

 e.g., input: cats parse output: cat +N +PL
 ate eat +V +PAST

List to Model Lexicon
•  What about using a large list as a Lexicon?

a, aardvark, …
… bake, baked, baker, bakery, bakes, baking, …
… cat, catatonic, cats, catapult, …
… dog, dogged, dogs, …
… familiar, familiarity, familiarize, family, …

•  Problem?

Using FSAs to recognize
morphologically complex words

•  Create FSAs for classes of word stems (word
lists).

•  Create FSA for affixes using word classes as
stand-ins for the stem word lists.

•  Concatenate FSAs for stems with FSAs for
affixes.

FSA Example using Word Classes

Defining morpheme selection and ordering for
singular and plural English nouns:

J&M text, Fig 3.3

A variation with some words:

Note: Orthographic issues are not addressed.

More Generalizations

… formal, formalize, formalization, …
… fossil, fossilize, fossilization, …
•  These represent sets of related words.
•  New forms are built with the addition of

derivational morphology.
– ADJ + -ity NOUN
– ADJ or NOUN + -ize VERB

Derivational Rules

Note: What string would this recognize? Is that really
what we want?

J&M text, Fig 3.7

Morphological Parsing

•  A parsing task:
– Recognize a string
– Output information about the stem and affixes of

the string
•  Something like this:
–  Input: cats
– Output: cat+N+PL

•  We will use Finite-State Transducers to
accomplish this.

Finite-State Transducer (FST)
An FST: (see text pg 58 for formal definition)
•  is like an FSA but defines regular relations, not

regular languages
•  has two alphabet sets
•  has a transition function relating input to states
•  has an output function relating state and input to

output
•  can be used to recognize, generate, translate or

relate sets

Visualizing FTSs

•  FSTs can be thought of as having an upper tape
and a lower tape (output).

J&M text, Fig 3.12

Regular Relations

•  Regular language: a set of strings
•  Regular relation: a set of pairs of strings
•  E.g., Regular relation = {a:1, b:2, c:2}

 Input Σ = {a,b,c}
 Output ={1, 2}
 FST: a:1

c:2
q0 q1

b:2

FST conventions
c:ab

q0 q1

c

q0 q1

ab

c:c

q0 q1

c

q0 q1

Complex input element Divided into upper and lower

Default pair Default pair - shortcut
c:ϵ

q0 q1

c on upper, nothing on lower

=

=

FSTs: Not just fancy FSAs

•  Regular languages are closed under difference,
complementation and intersection; regular
relations are (generally) not.

•  Regular languages and regular relations are
both closed under union.

•  But regular relations are closed under
composition and inversion; not defined for
regular languages.

Inversion

•  FSTs are closed under inversion, i.e., the
inverse of an FST is an FST.

•  Inversion just switches the input and output
labels.
e.g., if T1 maps ‘a’ to ‘1’, then T1

-1 maps ‘1’ to ‘a’

•  Consequently, an FST designed as a parser can
easily be changed into a generator.

Composition

•  It is possible to run input through multiple
FSTs by using the output of one FST as the
input of the next. This is called Cascading.

•  Composing is equivalent in effect to Cascading
but combines two FSTs and creates a new,
more complex FST.

•  T1 ∘ T2 = T2 (T1(s))
 where s is the input string

Composition Example

•  Very simple example:
 T1 = {a:1}
 T2 = {1:one}
 T1∘ T2 = {a:one}
 T2 (T1 (a)) = one
•  Note that order matters: T1(T2(a)) ≠ one
•  Composing will be useful for adding

orthographic rules.

Comparing FSA Example with FST

Recall this FSA singular and plural recognizer:

J&M text, Fig 3.3

An FST to parse English Noun
Number Inflection

^ = morpheme boundary	

# = word boundary	

J&M text, Fig. 3.13

What are the benefits of this FST over the previous FSA?
What is the input alphabet? What does the output look like?

Lexical to Intermediate Level

Overview

•  Morphology primer
•  Using FSAs to recognize morphologically

complex words
•  FSTs (definition, cascading, composition)
•  FSTs for morphological parsing
•  Next time: More on FSTs, morphological

analysis and an XFST demo

Note: FSA as a generator
•  Not only can an FSA be used as a recognizer –

it can also generate. Back to sheep language:

0 1 3 2 4

b a a ! a

• Begin at the start state (0).
• Emit each arc label.
• Output examples: baa! baaaa! baaaaaaaaaaa!

Finite-State Transducers: Mealy
machines

•  Q: a finite set of states q0, q1, …, qN

•  Σ: a finite alphabet of complex symbols i : o
such that i ∈ I and o ∈ O. Σ ⊆ I x O. I and O
may each include ϵ.

•  q0: the start state
•  F: the set of final states, F ⊆ Q
•  δ(q, i : o): the transition matrix.

Regular Relations: Non-linguistic
example

•  Father-of relation: {〈 Larry, David 〉, 〈 Ed, Cora 〉,
〈 David, Henry 〉, 〈 David, Simon 〉}

•  Parent-of relation: {〈 Larry, David 〉, 〈 Ed, Cora 〉,
〈 David, Henry 〉, 〈 David, Simon 〉,
〈 Andrea, David 〉, 〈 Geri, Cora 〉, 〈 Cora, Henry 〉,
〈 Cora, Simon 〉}

•  Grandfather-of relation: {〈 Larry, Henry 〉,
〈 Larry, Simon 〉, 〈 Ed, Henry 〉, 〈 Ed, Simon 〉}

•  Paternal-grandfather-of relation:
{〈 Larry, Henry 〉, 〈 Larry, Simon 〉}

