Chapter 3
Finite State Morphological Parsing

April 4, 2011

Overview

Morphology primer

Using FSAs to recognize morphologically
complex words

FSTs (definition, cascading, composition)
FSTs for morphological parsing

Next time: More on FSTs, morphological
analysis and an XFST demo

Morphology Primer

Words consist of stems and aftixes.

Affixes may be prefixes, suffixes, circumfixes
or infixes.
Examples?

(Also: root and pattern morphology)
Examples?

Phonological processes can sometimes apply
to combinations of morphemes.

Phonology at Morpheme Boundaries

Examples:

English
Singular

[keet]

‘cat’

[dag]
Cdog)

[fn{f]
‘finch’

/s/
Plural
[keets]

‘cats’
[dagz]
‘dogs’
[finY oz]

‘finches’

Spanish /s/
Singular Plural

[ninjo] [ninjos]
Eng: ‘boy’

[karakol] [karakoles]

Eng: ‘snail’

More on Morphology

Languages vary 1n the richness of their

morphologic

al systems.

Languages also vary in the extent to which
phonological processes apply at (and
sometimes blur) morpheme boundaries.

English has relatively little inflectional

morphology,

but fairly rich (if not perfectly

productive) derivational morphology.

Turkish has more than 200 billion word forms.

Questions

More examples of complex morphemes?

What underlying representations might we
want?

Why would we want to get to those underlying
representations?

How do things change when we consider
orthographic rules rather than phonological
rules?

Morphological Parsing

* Parsing: Producing a linguistic structure for an
input.
* Examples of morphological parsing:
— Separating words 1nto stems/roots and affixes
e.g., input: cats parse output: cat +s
— Labeling morphemes with category labels
e.g., Input: cats parse output: cat +N +PL
ate eat +V +PAST

List to Model Lexicon

* What about using a large list as a Lexicon?

a, aardvark, ...

.. bake, baked, baker, bakery, bakes, baking, ...

... cat, catatonic, cats, catapult, ...
.. dog, dogged, dogs, ...
.. familiar, familiarity, familiarize, family, ...

 Problem?

Using FSAs to recognize
morphologically complex words

* Create FSAs for classes of word stems (word
lists).

* Create FSA for affixes using word classes as
stand-ins for the stem word lists.

e Concatenate FSAs for stems with FSAs for
affixes.

FSA Example using Word Classes

Defining morpheme selection and ordering for
singular and plural English nouns:

reg-noun plural -s

& @ &

Irreg-sg-noun J&M text, Fig 3.3

A variation with some words:

y gt /)

Note: Orthographic 1ssues are not addressed.

More Generalizations

... formal, formalize, formalization, ...

... fossil, fossilize, fossilization, ...

* These represent sets of related words.

* New forms are built with the addition of
derivational morphology.

— Al

DJ + -ity ® NOUN

— Al

DJ or NOUN + -ize @ VERB

Derivational Rules

noun, -ize/\V -ation/N
%) o, {81
i Zitw/N . -er/N
-ness/N

-ness/N

“ly/Adv

_ -ly/Adv
-ative/A -ful/A
noun,

J&M text, Fig 3.7

Note: What string would this recognize? Is that really
what we want?

Morphological Parsing

* A parsing task:
— Recognize a string

— Output information about the stem and affixes of
the string

* Something like this:
— Input: cats
— Output: cat+N+PL

 We will use Finite-State Transducers to
accomplish this.

Finite-State Transducer (FST)

An FST: (see text pg 58 for formal definition)

* 1s like an FSA but defines regular relations, not
regular languages

* has two alphabet sets
* has a transition function relating input to states

* has an output function relating state and input to
output

 can be used to recognize, generate, translate or
relate sets

Visualizing FTSs

* FSTs can be thought of as having an upper tape
and a lower tape (output).

Lexical 3

+N

HE

i

Surface §

S

5

J&M text, Fig 3.12

* Regul
* Regul

Regular Relations

ar language: a set of strings

ar relation: a set of pairs of strings

* E.g.,|
Input

Regular relation = {a:1, b:2, c:2}
> = {a,b,c}

Output ={1, 2}

FST:

¢

FST conventions
C
/ab N

60 &0

Complex input element Divided into upper and lower

g8 © s

Default pair Default pair - shortcut

@ @

¢ on upper, nothing on lower

FSTs: Not just fancy FSAs

* Regular languages are closed under difference,
complementation and intersection; regular
relations are (generally) not.

* Regular languages and regular relations are
both closed under union.

* But regular relations are closed under
composition and inversion; not defined for
regular languages.

Inversion

 FSTs are closed under inversion, 1.e., the
inverse of an FST 1s an FST.

* Inversion just switches the input and output
labels.

e.g., if T, maps ‘a’to ‘1°, then 7" maps ‘1’ to ‘a’

* Consequently, an FST designed as a parser can
casily be changed into a generator.

Composition

* It 1s possible to run input through multiple
FSTs by using the output of one FST as the
input of the next. This 1s called Cascading.

* Composing 1s equivalent in effect to Cascading
but combines two FSTs and creates a new,
more complex FST.

* T, ° T, =T,(T)(s))
where s 1s the input string

Composition Example

* Very simple example:
T,={a:l}
T, = {l:one}
T,°T,= {a:one}
T,(T, (a)) = one
* Note that order matters: 7,(7,(a)) # one

* Composing will be useful for adding
orthographic rules.

Comparing FSA Example with FST

Recall this FSA singular and plural recognizer:

reg-noun plural -s

& ® &

Irreg-sg-noun J&M text, Fig 3.3

An FST to parse English Noun
Number Inflection

+P|

reg-noun

irreg-sg-noun_ q

irreg-pl-noun

J&M text, Fig. 3.13

A = morpheme boundary
= word boundary

What are the benefits of this FST over the previous FSA?
What 1s the mput alphabet? What does the output look like?

Lexical to Intermediate Level

Overview

Morphology primer

Using FSAs to recognize morphologically
complex words

FSTs (definition, cascading, composition)
FSTs for morphological parsing

Next time: More on FSTs, morphological
analysis and an XFST demo

Note: FSA as a generator

* Not only can an FSA be used as a recognizer —
it can also generate. Back to sheep language:

ajololol
*Begin at the start state (0).

*Emit each arc label.
*Output examples: baa! baaaa! baaaaaaaaaaa!

Finite-State Transducers: Mealy
machines

Q: a finite set of states g, g4, ---, Gy

> a finite alphabet of complex symbols i : o
suchthati€/ando € 0.2 CIx O.land O
may each include €.

q,: the start state
F': the set of final states, F C QO

o(q, i : 0): the transition matrix.

Regular Relations: Non-linguistic
example

* Father-of relation: {{ Larry, David), { Ed, Cora),
(David, Henry), (David, Simon)}

* Parent-of relation: {{ Larry, David), { Ed, Cora),
(David, Henry), (David, Simon),
(Andrea, David), (Geri, Cora), { Cora, Henry),
(Cora, Simon)}

* Grandfather-of relation: {{ Larry, Henry),
(Larry, Simon), { Ed, Henry), { Ed, Simon)}

* Paternal-grandfather-of relation:
{(Larry, Henry), (Larry, Simon)}

