
Ling/CSE 472: Introduction to Computational
Linguistics	

3/28/12
Regular expressions & Finite State Automata

Overview

• Twitter: tweet classes

• Formal definition of regular languages

• Regular expression examples

• Extension to regular expressions

• Substitution in Python

• Finite state automata

• Recognition with FSA -- pseudocode

• DFSA v. NFSA

Announcement

• Assignment 1 is posted

• Elizalike.py (version 1) due 4/3 at 10am

• Complete assignment due 4/6 at 5pm

@everyone: Tweet the class! #cl472

• Goals

• Create a sense of community within the class

• Provide on-going feedback to peers and instructors about what is interesting/
difficult/etc in the matrial

• Understand the language of tweets

• Create a (labeled) corpus for studying from the perspective of NLP

• Digital literacy...

• What subcategory hashtags should we use?

Possible classes/thing we might do with tweets

• Emotion trying to convey: #wtf, #sarcasm, ...

• Parts of the class: #hw, #lecture, #reading, #general

• CS v. Ling: #cs, #ling

• Subtopic/subtask: #pos, #lemmatization, #...

• Dialogue acts: #question, #response, #fyi, #applications

• Formality level: #formal, #informal

• Idiomatic expressions

Hashtags: emotions + speech acts

• #curious, #help, #fyi, #wtf, #hth, #argh,

Formal languages

• From the point of view of formal languages theory, a language is a set of
strings defined over some alphabet.

• Chomsky hierarchy: a description of classes of formal languages:

• regular < context-free < context-sensitive < all languages

• Languages from a single level in the hierarchy can be described in terms of
the same formal devices.

Three views on the same object

Regular languages can be described by regular expressions and by finite-state
automata.

• Regular language: a set of strings

• Regular expression: an expression from a certain formal language which
describes a regular language

• Finite-state automaton: a simple computing machine which accepts or
generates a regular language

Formal definition of regular languages: symbols

• ϵ is the empty string

• ø is the empty set

• Σ is an alphabet (set of symbols)

• Examples of alphabets:

• Σ = {a,b,!}

• Σ = {c,a,t,d,o,g,f,o,x}

• Σ = {cat, dog, fox}

• Σ = {1, 3, 5, 7}

Formal definition of regular languages

The class of regular languages over Σ is formally defined as:

• ø is a regular language

• ∀a ∈ Σ ∪ ϵ, {a} is a regular language

• If L1 and L2 are regular languages, then so are:

- L1 · L2 = {xy | x ∈ L1, y ∈ L2} (concatenation)

- L1 ∪ L2 (union or disjunction)

- L1* (Kleene closure)

(Jurafsky & Martin 2009:39)

Examples: Single Character

• Alphabet: Σ = {a}

• Language (set of strings): L = {a}

• Regular expression: /a/

• Finite state machine:

Examples: Disjunction/union

• Alphabet: Σ = {a, b}

• Langauge (set of strings): {a, b}

• Regular expression: /(a|b)/

• Finite state machine:

• This language/regexp/FSA also reflects the union of two languages: {a} ∪ {b}

Examples: Concatenation

• Σ = {a, b, c, d}

• L = {ac, ad, bc, bd}

• Regular expression: /(a|b)(c|d)/

• Finite state machine:

Examples: Concatenation

• Note: This language/regexp/FSA also reflects the concatenation of two
languages:

• L1 = {a, b} · L2 = {c, d}

Examples: Kleene closure

• Σ = {a, b} (again)

• L = {ϵ, a, b, aa, bb, ab, ba, bb, ...}

• Regular expression: /(a|b)*/

• Finite state machine:

Regular expression examples

• abc

• a|bc

• (a|bb)c

• a[bc]

• a*b

• a?b

• [^a]*th[aeiou]+[a-z]*

• ^a

• ^a.*z$

• \bthe\b

Regular expressions: An extension

• Parentheses allow you to ‘save’ part of a string and access it again.

• In general:

• () creates a group that can be referenced

• \n refers back to the nth group in a regular expression

• For example, to search for repeated words: /([a-z]+) \1 \1/

• That will find any group of one or more lower case alphabetic characters
repeated twice (and separated by a space): ‘I called kitty kitty kitty.’

Regular expressions: An extension

• Note: This extension to Python/Perl/grep/MS “regular expression” syntax
actually takes them beyond the realm of regular expressions in the Chomsky
hierarchy sense.

• The languages generated by “regular expressions” augmented with this kind
of memory device are NOT regular languages, i.e., cannot be recognized by
FSAs.

• Why?

So what are regular expressions good for?

• Search

• Search and replace

• Morphotactics: Defining classes of words as sequences of morphemes

• Chunk parsing: Finding units within running text that satisfy patterns such as
D A* N

Regular expression substitution in Python

• import re

• re.sub(pattern, replacement, string); use r to mark pattern as a regex

• \g<n> references the nth group

Back to FSAs

• An abstract computing machine

• Consists of a set of states (or nodes in a directed graph) and a set of
transitions (labeled arcs in the graph)

• Three kinds of states: plain, start, final

FSA as transition table

• An FSA can also be represented as a transition table:

Recognizing a regular language

FSAs can be used to recognize a regular language.

• Take the FSA and a “tape” with the string to be recognized.

• Start with the start of the tape and the FSA’s start state.

• For each symbol on the tape, attempt to take the corresponding transition in
the machine.

• If no transition is possible: reject.

• When the string is finished, check whether the current state is a final state.

• Yes: accept. No: reject.

Notes on pseudocode

• Some basic components of algorithms:

• Loops (e.g., while x is true; for every x in …)

• Conditionals (e.g., if … do this, else do this)

• Variable assignment (e.g., i = i+1)

• Evaluating expressions (e.g. if x = 2, print x + 3)

• Input values

D-RECOGNIZE in pseudo-code

Non-deterministic FSA (NFSA)

• The FSAs considered so far are deterministic (DFSA): there is only one choice
at each node.

• NFSAs include more than one choice at (at least) one node.

• Those choices might include ϵ-transitions, i.e., unlabeled arcs that allow one
to jump from one node to another without reading any input.

• Note: Any NFSA can be rewritten as a DFSA.

Equivalent (D)FSA and NFSA

Problem with Non-determinism

• Non-determinism can lead to dead ends when recognizing strings. How?

• Types of solutions:

• backup

• look-ahead

• parallelism

• The backup technique is essentially to record a search-state at each decision
point consisting of the position on the input tape and the state (node) of the
machine. Then paths to dead ends can be retraced and different decisions
made.

• What’s the use/point of NFSAs, if there’s always an equivalent DFSA?

Overview

• Twitter: tweet classes

• Formal definition of regular languages

• Regular expression examples

• Extension to regular expressions

• Substitution in Python

• Finite state automata

• Recognition with FSA -- pseudocode

• DFSA v. NFSA

