
Ling 472 Lab, November 5, 2004

Revised pseudo code for the (non-probabilistic) CKY algorithm:

Cr eat e and cl ear chart[#words, #words]

f or i � 1 t o #words
 chart[i, i] � { � | � � inputi}

f or span � 2 t o #words
 f or begin � 1 t o #words – span + 1
 end � begin + span – 1
 f or m � begin t o end – 1
 i f (� �

�
1

�
2 � P �

�

1 � chart[begin, m] �
�

2 � chart[m + 1, end] t hen
 char t [begi n, end] = char t [begi n, end] � { � }

Step through the (non-probabilistic) CKY algorithm, using this grammar:

S � NP VP
S � Aux S

VP � V S
VP � V NP
VP � VP PP

NP � Det N
NP � NP PP

NP � Wai ki k i
NP � Osl o
NP � Ki m
NP � snow

PP � P NP
PP � P S

V � ador es
VP � snor es

Aux � does
Aux � can
Aux � i s

P � i n
P � on
P � bef or e

Det � t hi s
Det � t hese
Det � t he

Use this sentence:

Snow i n Osl o snor es
 1 2 3 4

First, start out with a chart with the appropriate cells. Each one corresponds to a substring
of the input string:

 1 2 3 4
1
2
3
4

The first loop:

f or i � 1 t o #words
 chart[i, i] � { � | � � inputi}

This fills in the chart with pre-terminals.

So we go through i = 1 to i = 4; for each of these, we put an element in the corresponding
cell in the chart for each preterminal that expands to that input. We end up with a chart
that looks like this:

 1 2 3 4
1 NP
2 P
3 NP
4 VP

In the next set of nested loops, we build new constituents out of existing ones. Each time
we execute the innermost loop, we are looking at two potential daughters and seeing if
they form a constituent. If they do, we add that constituent to the appropriate place in the
chart. The loops have these variables:

span – The length of the constituent. This varies from 2 to the whole length of the
sentence. It starts at two because all the constituents of length one are put into the chart
by the initial loop.

begin – The starting position of the constituent. The longer the span, the smaller this has
to be. This varies from 1 to the length of the input minus span, plus 1. So if we’ re trying
to build constituents of length 3, the starting point can be anywhere from 1 to 2.

end – this is fully determined by begin and span. It is the end of the constituent.

m – The dividing point between the two daughters of the constituent. (Actually, the end
point of the first daughter.) This varies from begin to end minus 1.

In the first iteration of the outermost loop, we’ re building constituents of length 2, so
span will be 2. begin will range from 1 to 3. end will always be 1 more than begin. m will
always be the same as begin.

we look at 1,1 (NP) and 2,2 (P) and there is no rule
we look at 2,2 (P) and 3,3 (NP) and add PP to 2,3
we look at 3,3 (NP) and 4,4 (VP) and add S to 3,4

We end up with this table:

 1 2 3 4
1 NP
2 P PP
3 NP S
4 VP

In the next iteration, we’ re building constituents of length 3, so span will be 3. begin can
range from 1 to 2. end will always be 2 more than begin. m will range from begin to one
more than begin.

we look at 1,1 (NP) and 2,3 (PP) and add NP to 1,3
we look at 1,2 and don’ t find anything
we look at 2,2 (P) and 3,4 (S) and add PP to 2,4
we look at 2,3 (PP) and 3,4 (VP) and there is no rule

We end up with this table:

 1 2 3 4
1 NP NP
2 P PP PP
3 NP S
4 VP

In the final iteration, we’ re building constituents of length 4, so span will be 4. begin can
just be 1. end can only be 4. m can range from 1 to 3.

we look at 1,1 (NP) and 2,4 (PP) and add NP to 1,4
we look at 1,2 and don’ t find anything
we look at 1,3 (NP) and 4,4 (VP) and add S to 1,4

We end up with this table:

 1 2 3 4
1 NP NP NP, S
2 P PP PP
3 NP S
4 VP

