
Ling/CSE 472: Intro to Computational Linguistics

September 30, 2004

Chapter 1

Introduction, overview

Overview

• What is computational linguistics

• Who’s here

• Syllabus

• Showing a computer who’s boss

• Preview: Regular expressions

What is Computational Linguistics?

• Everything you’d need to know to build the language

interface part of HAL. What would that be?

• Processing language on computers:

• For practical applications

• For linguistic research

Practical applications (1/2)

• Speech recognition

• Speech synthesis

• Machine translation

• Information retrieval

• Natural language interfaces to computers

• Dialogue systems (e.g., airline flight status)

Practical applications (2/2)

• Computer-assisted language learning (CALL)

• Grammar checkers

• Spell checkers

• OCR (optical character recognition)

• Hand-writing recognition

• Augmentative and assistive communication

• . . .

Linguistic research

• Searching large corpora for patterns, examples

• Creating structured databases of linguistic information

for typological research (e.g., Autotyp)

• Modeling human linguistic competence and performance

• Computational psycholinguistics

• Grammar engineering (Matrix)

• Software to facilitate language documentation (Elan,

FIELD, GOLD, Montage)

Statistical v. symbolic methods

• A hot topic in the field these days

• Statistical methods involve training a stochastic model

on a body of data so it can predict the most probable
outcome/category/etc for new data.

• Symbolic methods involve knowledge engineering, or

hand-coding linguistic knowledge and then applying that

knowledge to tasks.

• Statistical methods provide robustness.

• Symbolic methods provide precision.

• Statistical and symbolic methods can be combined.

What is Computational Linguistics?

• Everything you’d need to know to build the language

interface part of HAL. What would that be?

• Processing language on computers:

• For practical applications

• For linguistic research

Goals of this course

• Familiarity with computational linguistic resources and

how they are applied in research in computational

linguistics and other subfields.

• A rough sense of the state of the art (what can we do

with language on computers anyway?)

• Ability to conceptualize problems from the perspective

of computational linguistics.

Syllabus

• On the web page: courses/ling472

• Slides will be posted (often before lecture)

• Requirements:

• 6 Homework assignments: 45%

• Midterm: 20%

• Final (paper, project, or exam): 30%

• Class participation (incl. EPost): 5%

• Lab meetings (Fridays)

Who’s here

• A good class to work together – everyone brings

different skills

• This is fabulous/brilliant/extra!

• I’m going to bring a lot to this class because...

Letting the computer know who’s boss (1/2)

• Computer ‘literacy’ is really a combination of experience

and attitude.

• Experience gives you the answers to many questions and

a sense of what the possible space of answers is.

• The important attitude boils down to confidence in one’s

ability to find the answer to a new question.

• There are always new questions because:

• the technology is always developing

• there is too much for any one person to know it all

Letting the computer know who’s boss (2/2)

• Keep in mind:

• It’s always obvious once you know the answer.

• All pieces of software were designed by some person
or people with some functionality in mind.

• Places to look for answers:

• on-line documentation (man, info, help)

• product websites (esp. discussion forums)

• Google: websites, and especially newsgroups

• off-line documentation (i.e., books)

• Work together!

Administrivia

• Office hours

• WebQ on course website

Preview: Regular Expressions

• Formal languages

• Regular languages/regular expressions/FSA

• Formal definition of regular languages

• Regular expressions and search

• Perl regular expression syntax

Formal languages

• From the point of view of formal languages theory, a

language is a set of strings defined over some alphabet

• The Chomsky hierarchy is a description of classes of

languages.

• Languages from a single level in the hierarchy can be

described in terms of the same formal devices.

• Regular languages can be described by regular

expressions and by finite-state automata.

• Regular languages 〈 context-free languages 〈

context-sensitive languages 〈 all languages

Three views on the same object

• Regular language: a set of strings

• Regular expression: an expression from a certain formal

language which describes a regular language

• Finite-state automaton: a simple computing machine

which accepts or generates a regular language

Formal definition of regular languages: Symbols

• ε is the empty string

• φ is the empty set

• Σ is an alphabet (set of symbols)

Formal definition of regular languages

• The class of regular languages over Σ is formally defined

as:

• φ is a regular language

• ∀a ∈ Σ ∪ ε, {a} is a regular language.

• If L1 and L2 are regular languages, then so are:

(a) L1 · L2 = {xy | x ∈ L1, y ∈ L2} (concatenation)

(b) L1 ∪ L2 (union or disjunction)

(c) L∗

1
(Kleene closure)

(Jurafsky & Martin 2000:49)

Examples

• abc

• a|bc

• (a|b)c

• a∗b

• [ˆa]*th[aeiou]+[a-z]*

Regular expressions are useful for search

• Return all lines/documents containing a string of the

specified language.

• Allows one to search for something that is conceptually

one thing but linguistically or orthographically varied,

e.g.: [Uu]niversit[y|ies]

• (Also allows searches for two things at the same time,

e.g.: cat|dog)

• NB: Matching a string containing a substring described

by a regular expression 6= being in the language

described by the regular expression.

Regular expression syntax

• Concatenations, disjunction, Kleene * (cf. formal def)

• Plus some syntactic sugar, i.e., other operations definable

in terms of the above.

• Similar across Perl, Unix (including grep) and MS

products.

• We’ll be using Perl (and some grep).

Perl regular expression syntax (1/2)

• Concatenation = concatenation

/abc/, /ab c/

• Disjunction: |, []

/[Aa][Bb][Cc]/, /cat|dog/, /kitt(y|ies)/

• Kleene ∗ (and + and ? and ranges)

/aa*/, /aa?a*/, /a+/, /a1,/, a1,10

• Ranges, negation and wildcard:

/[A-Z][0-9][a-z][d-l][ˆjk][ˆt-z]./,

/\d/

Perl regular expression syntax

• Escape character:

/\[\.\ |\{ˆ/

• Anchors: beginning and end of lines

/ˆOnce upon a time/, /The end\.$/

• Operator precedence hierarchy:

parenthesis 〉〉 counters 〉〉 sequences and anchors 〉〉

disjunction

Regular expression summary

• Encode regular languages (sets of strings)

• Are useful for search

• Syntax: concatenation, disjunction, Kleene ∗, plus sugar

• Useful for search

• More on Friday and Tuesday

Overview

• What is computational linguistics

• Who’s here

• Syllabus

• Showing a computer who’s boss

• Preview: Regular expressions

Reminders

• Pick up your Husky card

• Fill out the WebQ

