
November 16, 2004

Chapter 4.1–4.5

Computational Phonology



Overview

• Catch-up: Evaluating parsers

• Phonetics, IPA, ARPAbet

• Phonological rules

• FSTs for phonological rules

• Rule ordering and two-level phonology

• Optimality Theory: OT

• Machine learning of phonological rules

• Next time: text-to-speech (TTS)



Evaluation (General)

• Two questions to consider:

• Is the code you wrote doing what you meant it do?

• Is what you meant it to do a good (or decent, or
better, or above-baseline) solution to the problem
you’re targeting?

• The latter (only) is usually reported in papers on
computational linguistics. When it’s not, people get
grumpy.

• Why might matters of evaluation be particularly hard in
computational linguistics?

• How could you evaluate a parser?



Evaluating parsers

• Create a “gold standard”

• C = # of correct constituents in candidate parse

• N = total # of constituents in candidate parse

• Ns = total # of constituents in gold standard parse

• Precision: C/N

• Recall: C/Ns

• Cross-brackets: number of occurrences of ((A B) C) for

(A (B C))



More on Precision and Recall

• Precision and recall tend to conflict: maximizing one can
be done at the cost of sacrificing the other.

• Example: Find all the aces in a deck of cards:

• 100% precision: Turn over one card, it’s an ace, stop.

• 100% recall: Turn over all the cards; you’ve found all

the aces.

• F-Score: balance of precision and recall:

F =
(β2 + 1)PR

β2P + R

β > 1, precision is favored, β < 1, recall is favored.



Phonetics

• Phonetics: The study of the speech sounds of the world’s

languages.

• Speech sounds can be described by their place and

manner of articulation, plus some other features

(oral/nasal, length, released/unreleased). [articulatory

phonetics]

• Also: acoustic phonetics and perceptual phonetics



Phonetics

• Alphabetic writing systems represent the speech sounds

used to make up words, but imperfectly:

• Predictable phonological processes not represented

• Historical muddling of systems is common

• IPA: An evolving standard with the goal of transcribing

the sounds of all human languages.

• ARPAbet: A phonetic alphabet designed for American

English using only ASCII symbols.



Phonological rules

• Much of the distribution of actual speech sounds in any

given language is predictable.

• Particular phones can be grouped into equivalence

classes (allophones) that appear in phonologically

describable environments.

• Phonological and morphophonological rules relate

underlying representations to surface forms.



SPE/FST rules

• /t/ → [flap] / V́ V

• FST implementing this is given in figure 4.10

• “accepts any string in which flaps occur in the correct

places, and rejects strings in which flapping doesn’t

occur, or in which flapping occurs in the wrong

environment”

• What forms should we test to validate these claims?

• What paths does the transducer take for those forms?



Rule ordering

• Rules can feed or bleed each other, but creating or

destroying the next rule’s environment.

• A long standing issue in phonology is whether rule

systems require extrinsic ordering, or whether all

ordering is intrinsic.

• Example: faks+z (‘faxes’)

• ε → [barred i] / [+sibilant] ˆ z #

• z → s / [– voice] ˆ #



More elaborate rule ordering: Yawelmani Yokuts

• Vowel harmony: suffix vowels agree in backness and

roundness with the preceding stem vowel, if the vowels

are of the same height.

• Lowering: Long high vowels become low.

• Shortening: Long vowels in closed syllables become

short.

• Order: Harmony, Lowering, Shortening:

/?u:t’+it/ → [?o:t’ut]

/sudu:k+hin/ → [sudokhun]



Modeling rule ordering

• Cascaded or composed FSTs

• But: Most phonological rules are independent of each

other.

• More efficient to run them in parallel.

• Koskenniemi’s two-level rules finesse the issue of

ordering by potentially referring to both underlying and

surface forms.

• (Likewise for XFST).

• Example: Figs. 4.12–4.14



• Computational phonology: What kinds of rules are

required to model NL phonological systems, and how

can they be implemented (with finite-state technology or

otherwise)?



More on two level rules

• Two level rules can refer to upper or lower tape (or both)

for both left and right context.

• Different types of two level rules differentiated by when

they apply: a is realized as b whenever it appears in the

context c d, only in that context, always and only, or

never.

• What about always and only outside that context, and

always outside and sometimes inside that context?

• XFST has a slightly different set of rules, with different

notation (sorry!)



Another approach: Optimality Theory (OT)

• Grammar consists of GEN and EVAL

• GEN takes an underlying form and produces all possible

surface forms.

• EVAL consists of a set of ranked constraints and an

algorithm for choosing the best candidate.

• The best candidate is the one who’s highest constraint

violation is lower than any of the others. In the case of a

tie, the next constraint violations are considered.



Implementing OT

• Explicit interpretation of constraints

• GEN: a regular relation (FST)

• EVAL: Cascade the constraints, but with ‘lenient

composition’ (Karttunen 1998)

• macro(priority union(Q,R), {Q, !domain(Q) ◦ R}).

• macro(lenient composition(S,C), priority union(S ◦ C,S)).

• lenient composition({b x [b,b], a x [b,b]*}, [b,b,b]*)



Learning Rankings

• Tesar & Smolensky (1993, 1998): Error-Driven

Constraint Demotion, learns ordinal rankings.

• Boersma (1997, 1998, 2000): Gradual Learning

Algorithm learns stochastic rankings, can handle

optionality and variation, as well as noisy training data.



Learning Rules

• Machine learning systems automatically induce a model

for some domain, given some data and potentially other

information.

• Supervised algorithms are given correct answers for

some of the data and use the answers to induce

generalizations to apply to further data.

• Unsupervised algorithms works only from data, plus

potentially some learning biases.



Learning Rules

• Ex: Gildea & Jurafsky (1996) specialize a learning

algorithm for a subtype of FSTs to learn two-level

phonological transducers from a corpus of input/output

pairs.

• Learning biases: Faithfulness and Community



Overview

• Phonetics, IPA, ARPAbet

• Phonological rules

• FSTs for phonological rules

• Rule ordering and two-level phonology

• OT

• Machine learning of phonological rules

• Next time: text-to-speech (TTS)


