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Probabilistic and Lexicalized Parsing
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Overview

• Review: PCFGs, using probabilities, learning

probabilities, non-probabilistic CKY

• Probabilistic parsing with CKY

• Inside-Outside

• Problems with PCFGs

• Lexicalized PCFGs

• Other things to add to PCFGs

• Modeling human parsing
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Review: PCFGs

• G = (N,Σ, P, S,D)

• N : A set of non-terminal symbols

• Σ: A set of terminal symbols (disjoint fromN )

• P : A set of productions (or phrase structure rules)

A→ β whereA ∈ N andβ ∈ (Σ ∪N)∗

• S: A desginated start symbol, selected fromN .

• D: a function assigning probabilities to each rule inP .
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Review: Using Probabilities

• Probability of a tree:

P (T ) =
∏

n∈T

p(r(n))

• The best parse:̂T (S) = argmax
T ∈ τ(S)

P (T )
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Review: Finding probabilities

• Not knowna priori like in the case of a fair die.

• Count occurences (relative frequencies) in a treebank.

• If no treebank is available, iteratively estimate with the

inside-outside algorithm.
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Review: CKY

• CKY (bottom-up, exhaustive)

• Two-dimensional array: #words× #words

• For each span, store all possible categories the grammar

can license over that span.

• (In a separate array, store pointers back to the daughters.)
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Probabilistic CKY

function CKY(words, grammar) returns most probable parse w/probability
Create, clearπ[#words,#words,#non-terms], back[#words,#words,#non-terms]
for i← 1 to #words

for A← 1 to #non-terms
if ( A→ wi is in grammar ) then

π[i, i, A]← P (A→ wi)
for span← 2 to #words

for begin← 1 to #words − span +1
end← begin + span − 1
for m← begin to end − 1

for A, B, C ← 1 to #non-terms
prob = π[begin,m,B] × π[m + 1,end,C]× P (A→ BC)
if (prob > π[begin,end,A]) then

π[begin,end,A] = prob
back[begin,end,A] = {m,B,C}

returnBUILD TREE(back[1,#words,1]), π[1,#words,1]
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Questions about Probabilistic CKY

• Top-down or bottom-up?

• What kind of object (data structure) ischart (likewise,

back)?

• What kind of information is stored in each cell inchart

(likewise,back)?

• Is this best-first or exhaustive?

• Is lexical ambiguity allowed? How?

• Where would you look to find the probability of the best

parse?
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Inside-Outside (EM for PCFGs)

• Start with a grammar, or just a set of non-terminals

• Assume that a good grammar is one that makes the

corpus likely

• Assume that sentences in a corpus are independent (not!)

• Goal: Find probabilities for each rule that maximize the

likelihood of the corpus

• Assign (perhaps randomly) some initial probability to

each rule

• Parse a corpus with that grammar
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Inside-Outside (EM for PCFGs)

• Assign new probabilities to each rule based on their

occurrence in the corpus and weighted by the probability

of each parse

• Iterate until a local maximum is reached (or at least

approximated)

• (Variant of EM: Expectation Maximization)

(Manning & Scḧutze 1999)
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Problems with Inside-Outside for learning PCFGs

• It’s slow: For each sentence, each iteration of training is

O(m3n3) wherem = length of the sentence andn = the

number of non-terminals in the grammar.

• Local maxima: the algorithm is very sensitive to the

initialization of the parameters. (Charniak 1993)

• Satisfactory grammar learning requires∼3x as many

non-terms as are linguistically motivated.(Lari & Young 1990)

• No guarantee that the grammars learned ressemble the

kinds of grammars that linguists write.

(Manning & Scḧutze 1999)
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Problems with PCFGs

• Assumes the expansion of one non-terminal is
independent of the expansion of any other (definition of

‘context-free’).

• Preference for pronouns in subject position

• → Data-Oriented Parsing (DOP) (e.g. Bod 1998)

• Lack of sensitivity to words

• Not modeling subcategorization preferences

• Or other lexical dendencies (cf. coordination)

• → PHPSG, etc.

• → Probabilistic lexicalized CFGs
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Probabilistic lexicalized CFGs

• Each node encodes lex item at bottom of its head path.

• Model rule-head and head-head dependencies:

P (T ) =
∏

n∈T

p(r(n) | n, h(n))× p(h(n) | n, h(m(n)))

• Given that the head isdumped, what is the probability

of expanding this VP as V NP PP?

• Given that the mother’s head isdumped, what is the

probability that the head of this NP issacks?

• Estimating these probabilities requires smoothing and

back-off techniques to deal with sparse data.
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Other kinds of information to include

• Condition probability of rule on syntactic category of

grandparent node

• Argument adjunct distinction

• Weighting lexical dependencies by proximity

• String-based context (three leftmost parts of speech)

• General strutural preferences
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Evaluating parsers

• Create a “gold standard”

• C = # of correct constituents in candidate parse

• N = total # of constituents in candidate parse

• Ns = total # of constituents in gold standard parse

• Precision: C/N

• Recall: C/Ns

• Cross-brackets: number of occurrences of ((A B) C) for

(A (B C))
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More on Precision and Recall

• Precision and recall tend to conflict: maximizing one can

be done at the cost of sacrificing the other.

• F-Score: balance of precision and recall:

F =
(β2 + 1)PR

β2P + R

β > 1, precision is favored,β < 1, recall is favored.
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Modeling Human Parsing

• Model attachment preferences

• Model garden-path effects:

• Prune search space to eliminate parses below a

certain probability threshhold.

• In a garden-path, the correct parse gets pruned.

• Do experiments with human speakers to detect

garden paths of varying degrees of severity.

• Explore which kinds of probabilistic information are

required to model those results on a computer.
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Summary

• Review: PCFGs, using probabilities, learning

probabilities, non-probabilistic CKY

• Probabilistic parsing with CKY

• Inside-Outside

• Problems with PCFGs

• Lexicalized PCFGs

• Other things to add to PCFGs

• Modeling human parsing
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Announcements

• No class Thursday

• Homework posted by Thursday, due 11/18

• Next time (Tuesday): Computational phonology
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