
October 28, 2004

Unification

Midterm Review

1



Overview

• Where we are (with unification)

• Unification algorithm (lisp and pseudocode)

• Integrating unification into the Earley parser

• Some other issues with unification

• Mid-quarter review: What we’ve covered

2



Where we are with unification

• Feature structures, types

• Feature structures are good for capturing generalizations

(e.g., agreement, subcategorization)

• Feature structures can be useful for harder things: long

distance dependencies, compositional semantics

• Unification: Fundamental operation with feature

structures

• Check for computability, return either fail or the

combined set of constraints.

3



Unification algorithm

• Recursive. Why?

• What are the base cases?

• Destructive. What does this mean? What is the benefit?

4



Pointers/Contents/Dereferencing

• Complicate feature structures by adding pointer/content

arcs at every level.

• If pointer is null, value at end of content arc is actual

contents.

• Otherwise, follow pointer.content.

• The process of finding the actual contents is called

‘dereferencing’.

5



Unification algorithm: outline (1/2)

• Input is two dags, output is one dag

• For two complex, non-identical feature structures:

• Set pointer of F1 to F2.

• Recursively check whether value of each feature in

F1 unifies with the value of that feature in F2.

• If the feature isn’t found in F2, create it there, with

null value.

• What about features in F2 but not in F1?

6



Unification algorithm: outline (2/2)

• Base cases:

• If value in one case (f1) is null, set the pointer of that

case to the other case, and return other (f2).

• If the values are identical (not just compatible!), set

pointer of f1 to f2 and return f2.

• If the values are atomic, nonnull, and not identical,

return failure.

7



Unification in Lisp

• How does the Lisp code on the following slides differ

from the pseudocode given in the book?

8



Unification in Lisp: representing DAGs

(defstruct dag

forward type arcs copy)

(defstruct arc

feature value)

9



Unification in Lisp (1/3)

(defun unify (dag1 dag2)

(catch :fail (unify1 dag1 dag2)))

10



Unification in Lisp (2/3))

(defun unify1 (dag1 dag2)

(let* ((dag1 (deref dag1))

(dag2 (deref dag2)))

(unless (eq dag1 dag2)

(let ((glb (glb (dag-type dag1) (dag-type dag2))))

(when (null glb) (throw :fail nil))

(setf (dag-forward dag1) dag2)

(setf (dag-type dag2) glb)

(loop ... [see next slide])

dag2))

11



Unification in Lisp (3/3)

(loop

for arc1 in (dag-arcs dag1)

for arc2 = (loop

for foo in (dag-arcs dag2)

when (eq (arc-feature foo)

(arc-feature arc1))

return foo)

when arc2 do

(unify1 (arc-value arc1) (arc-value arc2))

else do

(setf (dag-arcs dag2) (cons arc1 (dag-arcs dag2))))))

12



Integrating unification into the Earley parser

• Three changes:

• Add DAGs to edge representations

• Make COMPLETER check whether the fs of the

completed edge is compatible with the daughter it

(apparently) matches in each incomplete edge.

• Make ENQUEUE check for subsumption, not equality.

• Why are there no changes to PREDICTOR or SCANNER?

13



A more radical approach to parsing with

unification

• Replace category labels completely with feature

structures (this is what’s done in the LKB).

• Allows rules to UNDERSPECIFY the information that

would have been in the category labels, and instead

constraint only semantics, or only identify of category, or

...

14



A still more radical approach to parsing with

unification

• Do away with CFG ‘backbone’ altogether.

• Take advantage of a recursive feature like ARGS (cf

assignments 2 and 3).

• Parsing can be seen as successively resolving the ARGS

values to fully specified feature structures.

15



Packed charts and unification

• Check for subsumption rather than equality.

• Leave ‘accumlator’ features (RELS, HCONS) out of the

comparison.

• Unpacking becomes a bit more complicated.

16



Summary

• Unification algorithm

• Unification in Earley parser

• More radical approaches to unification-based parsing

• Unification and packed charts

• Now: Review

17



Notes on the exam

• Open book, open notes, closed web

• Covers all material discussed so far

18



Synthesis

• What is computational linguistics?

• How does it differ from other subfields of linguistics/CS?

• How is it similar to other subfields of linguistics/CS?

19



Topics covered so far

• Regular expressions

• Finite state automata

• Finite state transducers

• Morphology & morphological parsing

• CFG

• Syntactic parsing

• Feature structures

• Unification

• Parsing with unification

20



Formal languages

• A formal language is a set of strings

• Things you can do with a formal language:

• Recognize it

• Parse it

• Generate it

21



Knowledge bases

• Knowledge bases are encodings of (linguistic)

information.

• What kinds have we seen in this class?

• What formal systems to they use?

• What do they encode?

22



Using knowledge bases

• Knowledge bases can be used by various algorithms to:

• recognize

• parse

• generate

• ... sets of strings.

• Which algorithms have we seen for each, and what

knowledge bases do they use?

23



Formal devices

• What kinds of formal devices have we seen so far?

• What are the relationships among them?

• What kinds of operations are appropriate for each?

24



Topics covered so far

• Regular expressions

• Finite state automata

• Finite state transducers

• Morphology & morphological parsing

• CFG

• Syntactic parsing

• Feature structures

• Unification

• Parsing with unification

25


