October 28, 2004
Unification
Midterm Review



Overview

Where we are (with unification)

Unification algorithm (lisp and pseudocode)
Integrating unification into the Earley parser
Some other issues with unification

Mid-quarter review: What we’ve covered



Where we are with unification

Feature structures, types

Feature structures are good for capturing generalizations
(e.g., agreement, subcategorization)

Feature structures can be useful for harder things: long
distance dependencies, compositional semantics

Unification: Fundamental operation with feature
structures

Check for computability, return either fail or the
combined set of constraints.



Unification algorithm

e Recursive. Why?
e \What are the base cases?

e Destructive. What does this mean? What is the benefit?



Pointers/Contents/Dereferencing
Complicate feature structures by adding pointer/content
arcs at every level.

If pointer is null, value at end of content arc Is actual
contents.

Otherwise, follow pointer.content.

The process of finding the actual contents is called
‘dereferencing’.



Unification algorithm: outline (1/2)

e Input is two dags, output is one dag

e For two complex, non-identical feature structures:
e Set pointer of F1 to F2.

e Recursively check whether value of each feature in
F1 unifies with the value of that feature in F2.

e If the feature isn’t found In F2, create it there, with
null value.

e \What about features in F2 but not in F1?



Unification algorithm: outline (2/2)

e Base cases:

e If value in one case (f1) is null, set the pointer of that
case to the other case, and return other (f2).

e If the values are identical (not just compatible!), set
pointer of f1 to f2 and return f2.

e If the values are atomic, nonnull, and not identical,
return failure.



Unification In Lisp

e How does the Lisp code on the following slides differ
from the pseudocode given in the book?



Unification in Lisp: representing DAGs

(defstruct dag
forward type arcs copy)

(defstruct arc
feature val ue)



Unification in Lisp (1/3)

(defun unify (dagl dag2)
(catch :fail (unifyl dagl dag2)))

10



Unification in Lisp (2/3))

(defun uni fyl (dagl dag2?)
(let* ((dagl (deref dagl))
(dag2 (deref dag2)))
(unl ess (eq dagl dag2)
(let ((glb (glb (dag-type dagl) (dag-type dag2))))
(when (null glb) (throw :fail nil))
(setf (dag-forward dagl) dag2)
(setf (dag-type dag2) gl b)
(loop ... [see next slide])
dag?) )

11



Unification in Lisp (3/3)

(1 oop
for arcl in (dag-arcs dagl)
for arc2 = (|l oop
for foo in (dag-arcs dag2)
when (eq (arc-feature foo0)
(arc-feature arcl))
return foo)
when arc2 do
(uni fyl (arc-value arcl) (arc-value arc2))
el se do
(setf (dag-arcs dag2) (cons arcl (dag-arcs dag2))))))

12



Integrating unification into the Earley parser

e Three changes:
e Add DAGs to edge representations

e Make COMPLETER check whether the fs of the
completed edge is compatible with the daughter it
(apparently) matches in each incomplete edge.

e Make ENQUEUE check for subsumption, not equality.

e \Why are there no changes to PREDICTOR or SCANNER?

13



A more radical approach to parsing with
unification

e Replace category labels completely with feature
structures (this is what’s done in the LKB).

e Allows rules to UNDERSPECIFY the information that
would have been in the category labels, and instead
constraint only semantics, or only identify of category, or

14



A still more radical approach to parsing with
unification

e Do away with CFG ‘backbone’ altogether.

e Take advantage of a recursive feature like ARGS (cf
assignments 2 and 3).

e Parsing can be seen as successively resolving the ARGS
values to fully specified feature structures.

15



Packed charts and unification

e Check for subsumption rather than equality.

e Leave ‘accumlator’ features (RELS, HCONS) out of the
comparison.

e Unpacking becomes a bit more complicated.

16



Summary

Unification algorithm

Unification in Earley parser

More radical approaches to unification-based parsing
Unification and packed charts

Now: Review

17



Notes on the exam

e Open book, open notes, closed web

e Covers all material discussed so far

18



Synthesis

e \What is computational linguistics?
e How does it differ from other subfields of linguistics/CS?

e How is it similar to other subfields of linguistics/CS?

19



Topics covered so far

Regular expressions

Finite state automata

Finite state transducers

Morphology & morphological parsing
CFG

Syntactic parsing

Feature structures

Unification

Parsing with unification

20



Formal languages

e A formal language Is a set of strings

e Things you can do with a formal language:
e Recognize it
e Parse it

e Generate It

21



Knowledge bases
e Knowledge bases are encodings of (linguistic)
Information.

e \What kinds have we seen In this class?

e \What formal systems to they use?

e What do they encode?

22



Using knowledge bases

e Knowledge bases can be used by various algorithms to:
e recognize
® parse

e (enerate
e ... sets of strings.

e Which algorithms have we seen for each, and what
knowledge bases do they use?

23



Formal devices

e \What kinds of formal devices have we seen so far?

e \What are the relationships among them?

e What kinds of operations are appropriate for each?

24



Topics covered so far

Regular expressions

Finite state automata

Finite state transducers

Morphology & morphological parsing
CFG

Syntactic parsing

Feature structures

Unification

Parsing with unification

25



