October 26, 2004
Chapter 11.4-11.7
Feature Structures, Unification

Review

Feature structures are sets of pairs of features and values.

Values may be atomic symbols or feature structures
themselves.

The values of two or more features may be constrained
to be (token) identical.

In some systems, feature structures are typed.

Types allow statements of feature appropriateness, and of
constraints (on feature values) that apply to objects of the
same class.

Review

e Feature structures are often formalized with and
Implemented as DAGs, although other formalizations are
possible.

e The operation of unification checks whether two feature
structures are compatible, and if so, combine the
constraints from each into a single feature structure.

e Other operations on feature structures are conceivable
(cf. =, constraints in LFG).

Outline of today’s lecture
Using features and unification to account for long
distance dependencies

Using features and unification for compositional
semantics

A unification algorithm
Integrating a unifier into the Earley parser

Further issues that arise in parsing with unification

Long distance dependencies: Questions

e \Which book did you say that you thought Kim liked _ ?

e¢*\Which book did you say that you thought Kim liked The
Wizard of Oz?

e To which author has Kim written several fan letters ?
e Which author has Kim written several fan lettersto ?

e*To which author has Kim written several fan lettersto
?

e \Which author has Kim written several fan letters?

Long distance dependencies

e Bagels, |

e Bagels, |

e*Bagels, |

e Of bagels, | know Kim is fond _ .

movement

Ike

know Kim likes .

know Kim likes lox.

e Bagels, | know Kim is fond of.

e*Bagels, | know Kim is fond _ .

. English focus

¢*Of bagels, | know Kim is fond of .

Other long distance dependencies

Relative clauses:
This 1s the house that Jack built .

Tough adjectives:

This book Is easy to read .

Tough nouns:

Those shoes are a challenge to walk in .

Multiple LDDs:

Violins this well crafted, these sonatas are easy to
play on .

Three pieces of an LDD

e Bottom: recording the fact that something’s missing.

e Middle: propagating the information that something’s
missing.

e Top: matching a filler to the gap, and sealing off the
LDD.

Startgap: A traceless bottom

startgap-rule := unary-head-initial-sg &
[SPR #spr,
COMPS #conps,
GAP <! #gap ! >,
ARGS < [SPR #spr, COWPS < #gap . #conps > |>].

Middle: Passing up GAP values in unary rules

unary-rule-pg := unary-rule &
| GAP #gap,
REL #rel,
ARGS < [GAP #gap, REL #rel | >].

10

Middle: Passing up GAP values in binary rules

binary-rule-pg := binary-rule &
| GAP [LIST #gfront, LAST #qgtail],
ARGS < [GAP [LIST #gfront, LAST #gmddle |],
| GAP [LIST #gm ddl e, LAST #gtail]]>].

11

Top: Pairing a filler with the gap

filler-head-rule := binary-head-final &
[HEAD verb & #head,

SPR <>,

COWPS <>,

GAP <! | >,

ARGS < #gap & phrase & [SPR <>, COWPS <>],
| HEAD #head, SPR <>, COWPS <>,
GAP <! #gap !>] >].

12

Compositional Semantics, using feature structures

e Minimal Recursion Semantics (MRS: Copestake et al
1999)

e Representations consist of a bag of elementary predicates
(RELS), a bag of constraints on scopal relations between
the predicates (HCONS), and a small set of features
available for further composition (HOOK).

e Elementary predicates are all labeled by handles (which
participate in the HCONS constraints).

13

An example MRS

14

RELS

HCONS

HOOK

_quant_rel
LBL
PRED
ARGO
RSTR
BODY
qeq
HARG)
LARG

INDEX [0]
LTOP [6]

_def_g_rel

noun_rel
LBL
PRED
ARGO

15

_dog.n_rd

_argl_ev_rel
LBL [6]
PRED
ARGO [0]

ARG1

bark_v_rd [!

SUBJ

RELS

HOOK

bark says

<{HOOK.INDEX }>

<!

INDEX [O]
LTOP [6]

_argl_ev_rel
LBL 6]

ARGO [0]
ARG1

16

PRED _bark_v.rd|!

The grammar rule says (in essence)

RELS [A]l®[B]

HCONS [C] & [D]

HOOK

SUBJ ()
- RELS

HCONS ’

AIREE < suBl ([9]) >
RELS
HCONS

17

Compositional semantics using feature structures

Build up semantic representations alongside syntactic
one.

All semantic information Is represented as constraints on
signs.

Lexical entries and rules both have semantic aspects to
them.

“The meaning of a phrase is a function of the meaning of
Its parts and the way they’re put together.”

Phrases can also make substantive semantic
contributions, beyond just tying things together.

18

Unification in Lisp: representing DAGs

(defstruct dag
forward type arcs copy)

(defstruct arc
feature val ue)

19

Unification In Lisp

(defun unify (dagl dag2)
(catch :fail (unifyl dagl dag2)))

20

Unification In Lisp

(defun uni fyl (dagl dag2?)
(let* ((dagl (deref dagl))
(dag2 (deref dag2)))
(unl ess (eq dagl dag?2)
(l'et ((glb (glb (dag-type dagl) (dag-type dag2))))
(when (null glb) (throw :fail nil))
(setf (dag-forward dagl) dag2)
(setf (dag-type dag2) gl b)
(loop ... [see next slide])
dag?))

21

Unification in Lisp

(1 oop
for arcl in (dag-arcs dagl)
for arc2 = (|l oop
for foo in (dag-arcs dag2)
when (eq (arc-feature foo0)
(arc-feature arcl))
return foo)
when arc2 do
(uni fyl (arc-value arcl) (arc-value arc2))
el se do
(setf (dag-arcs dag2) (cons arcl (dag-arcs dag2))))))

22

Integrating unification into the Earley parser

e Three changes:
e Add DAGs to edge representations

e Make COMPLETER check whether the fs of the
completed edge is compatible with the daughter it
(apparently) matches in each incomplete edge.

e Make ENQUEUE check for subsumption, not equality.

e \Why are there no changes to PREDICTOR or SCANNER?

23

A more radical approach to parsing with
unification

e Replace category labels completely with feature
structures (this is what’s done in the LKB).

e Allows rules to UNDERSPECIFY the information that
would have been in the category labels, and instead
constraint only semantics, or only identify of category, or

24

A still more radical approach to parsing with
unification

e Do away with CFG ‘backbone’ altogether.

e Take advantage of a recursive feature like ARGS (cf
assignments 2 and 3).

e Parsing can be seen as successively resolving the ARGS
values to fully specified feature structures.

25

Packed charts and unification

e Check for subsumption rather than equality.

e Leave ‘accumlator’ features (RELS, HCONS) out of the
comparison.

e Unpacking becomes a bit more complicated.

26

Summary

e More examples of linguistic uses of feature structures
e Unification algorithm

e Issues pertaining to parsing with unification

27

Next time

e Review for midterm
e Put material covered so far into perspective

e Any requests?

28

