
October 26, 2004

Chapter 11.4–11.7

Feature Structures, Unification

1

Review

• Feature structures are sets of pairs of features and values.

• Values may be atomic symbols or feature structures

themselves.

• The values of two or more features may be constrained

to be (token) identical.

• In some systems, feature structures are typed.

• Types allow statements of feature appropriateness, and of

constraints (on feature values) that apply to objects of the

same class.

2

Review

• Feature structures are often formalized with and

implemented as DAGs, although other formalizations are

possible.

• The operation of unification checks whether two feature

structures are compatible, and if so, combine the

constraints from each into a single feature structure.

• Other operations on feature structures are conceivable

(cf. =c constraints in LFG).

3

Outline of today’s lecture

• Using features and unification to account for long

distance dependencies

• Using features and unification for compositional

semantics

• A unification algorithm

• Integrating a unifier into the Earley parser

• Further issues that arise in parsing with unification

4

Long distance dependencies: Questions

• Which book did you say that you thought Kim liked ?

•*Which book did you say that you thought Kim liked The

Wizard of Oz?

• To which author has Kim written several fan letters ?

• Which author has Kim written several fan letters to ?

•*To which author has Kim written several fan letters to

?

• Which author has Kim written several fan letters?

5

Long distance dependencies: English focus

movement

• Bagels, I like .

• Bagels, I know Kim likes .

•*Bagels, I know Kim likes lox.

• Of bagels, I know Kim is fond .

• Bagels, I know Kim is fond of.

•*Bagels, I know Kim is fond .

•*Of bagels, I know Kim is fond of .

6

Other long distance dependencies

• Relative clauses:

This is the house that Jack built .

• Tough adjectives:

This book is easy to read .

• Tough nouns:

Those shoes are a challenge to walk in .

• Multiple LDDs:

Violins this well crafted, these sonatas are easy to

play on .

7

Three pieces of an LDD

• Bottom: recording the fact that something’s missing.

• Middle: propagating the information that something’s

missing.

• Top: matching a filler to the gap, and sealing off the

LDD.

8

Startgap: A traceless bottom

startgap-rule := unary-head-initial-sg &

[SPR #spr,

COMPS #comps,

GAP <! #gap !>,

ARGS < [SPR #spr, COMPS < #gap . #comps >]>].

9

Middle: Passing up GAP values in unary rules

unary-rule-pg := unary-rule &

[GAP #gap,

REL #rel,

ARGS < [GAP #gap, REL #rel] >].

10

Middle: Passing up GAP values in binary rules

binary-rule-pg := binary-rule &

[GAP [LIST #gfront, LAST #gtail],

ARGS < [GAP [LIST #gfront, LAST #gmiddle]],

[GAP [LIST #gmiddle, LAST #gtail]]>].

11

Top: Pairing a filler with the gap

filler-head-rule := binary-head-final &

[HEAD verb & #head,

SPR <>,

COMPS <>,

GAP <! !>,

ARGS < #gap & phrase & [SPR <>, COMPS <>],

[HEAD #head, SPR <>, COMPS <>,

GAP <! #gap !>] >].

12

Compositional Semantics, using feature structures

• Minimal Recursion Semantics (MRS: Copestake et al

1999)

• Representations consist of a bag of elementary predicates

(RELS), a bag of constraints on scopal relations between

the predicates (HCONS), and a small set of features

available for further composition (HOOK).

• Elementary predicates are all labeled by handles (which

participate in the HCONS constraints).

13

An example MRS

14

























































RELS 〈!

























quant rel

LBL 1

PRED def q rel

ARG0 2

RSTR 3

BODY 4

























,













noun rel

LBL 5

PRED dog n rel

ARG0 2













,



















arg1 ev rel

LBL 6

PRED bark v rel

ARG0 0

ARG1 2



















!〉

HCONS 〈!









qeq

HARG 3

LARG 5









!〉

HOOK





INDEX 0

LTOP 6





























































15

bark says











































SUBJ

〈

[

HOOK.INDEX 2

]

〉

RELS

〈

!



















arg1 ev rel

LBL 6

PRED bark v rel

ARG0 0

ARG1 2



















!

〉

HOOK





INDEX 0

LTOP 6















































16

The grammar rule says (in essence)















































RELS A ⊕ B

HCONS C ⊕ D

HOOK 8

SUBJ 〈 〉

ARGS

〈

9





RELS A

HCONS C



,









SUBJ 〈 9 〉

RELS B

HCONS C









〉















































17

Compositional semantics using feature structures

• Build up semantic representations alongside syntactic

one.

• All semantic information is represented as constraints on

signs.

• Lexical entries and rules both have semantic aspects to

them.

• “The meaning of a phrase is a function of the meaning of

its parts and the way they’re put together.”

• Phrases can also make substantive semantic

contributions, beyond just tying things together.

18

Unification in Lisp: representing DAGs

(defstruct dag

forward type arcs copy)

(defstruct arc

feature value)

19

Unification in Lisp

(defun unify (dag1 dag2)

(catch :fail (unify1 dag1 dag2)))

20

Unification in Lisp

(defun unify1 (dag1 dag2)

(let* ((dag1 (deref dag1))

(dag2 (deref dag2)))

(unless (eq dag1 dag2)

(let ((glb (glb (dag-type dag1) (dag-type dag2))))

(when (null glb) (throw :fail nil))

(setf (dag-forward dag1) dag2)

(setf (dag-type dag2) glb)

(loop ... [see next slide])

dag2))

21

Unification in Lisp

(loop

for arc1 in (dag-arcs dag1)

for arc2 = (loop

for foo in (dag-arcs dag2)

when (eq (arc-feature foo)

(arc-feature arc1))

return foo)

when arc2 do

(unify1 (arc-value arc1) (arc-value arc2))

else do

(setf (dag-arcs dag2) (cons arc1 (dag-arcs dag2))))))

22

Integrating unification into the Earley parser

• Three changes:

• Add DAGs to edge representations

• Make COMPLETER check whether the fs of the

completed edge is compatible with the daughter it

(apparently) matches in each incomplete edge.

• Make ENQUEUE check for subsumption, not equality.

• Why are there no changes to PREDICTOR or SCANNER?

23

A more radical approach to parsing with

unification

• Replace category labels completely with feature

structures (this is what’s done in the LKB).

• Allows rules to UNDERSPECIFY the information that

would have been in the category labels, and instead

constraint only semantics, or only identify of category, or

...

24

A still more radical approach to parsing with

unification

• Do away with CFG ‘backbone’ altogether.

• Take advantage of a recursive feature like ARGS (cf

assignments 2 and 3).

• Parsing can be seen as successively resolving the ARGS

values to fully specified feature structures.

25

Packed charts and unification

• Check for subsumption rather than equality.

• Leave ‘accumlator’ features (RELS, HCONS) out of the

comparison.

• Unpacking becomes a bit more complicated.

26

Summary

• More examples of linguistic uses of feature structures

• Unification algorithm

• Issues pertaining to parsing with unification

27

Next time

• Review for midterm

• Put material covered so far into perspective

• Any requests?

28

