
October 21, 2003

Chapter 11.1–11.2

Feature structures

1



Summary

• Problems with CFG

• One solution: feature structure and unification

• An aside on modeling language

• Practice with unification (pizza)

• Concepts relating to feature structures

• Feature structures in the grammar

• Using types to capture linguistic generalizations

2



Problems with CFG

• Potentially arbitrary rules: D → S VP

• Gets clunky quickly with cross-cutting properties (we’ll

return to this)

• (Not quite powerful enough for natural languages)

Solution: Replace atomic node labels with feature structures.

3



Some grammatical theories which explicitly use

feature structures and unification

• GPSG: Generalized Phrase Structure Grammar

• HPSG: Head-driven Phrase Structure Grammar

http://hpsg.stanford.edu/

• LFG: Lexical Functional Grammar

http://www-lfg.stanford.edu/lfg/

• Construction Grammar

http://www.constructiongrammar.org/

• Unification Categorial Grammar

4



Modeling language (HPSG)

Two kinds of modeling:

• Speakers’ internalized grammars

• Set of possible English sentences

5



Modeling language (HPSG)

Three things involved in modeling:

• Real-world entities

• Models

• Descriptions of models

6



Feature Structure Descriptions















FEATURE1 VALUE1

FEATURE2 VALUE2

. . .

FEATUREn VALUEn















7



A Pizza Type Hierarchy

pizza-thing

pizza




CRUST,

TOPPINGS





topping-set








OLIVES,

ONIONS,

MUSHROOMS









vegetarian non-vegetarian








SAUSAGE,

PEPPERONI,

HAM









8



TYPE FEATURES/VALUES IST

pizza-thing

pizza




CRUST
{

thick, thin, stuffed
}

TOPPINGS topping-set





pizza-thing

topping-set












OLIVES
{

+, −
}

ONIONS
{

+, −
}

MUSHROOMS
{

+, −
}













pizza-thing

vegetarian topping-set

non-vegetarian












SAUSAGE
{

+, −
}

PEPPERONI
{

+, −
}

BBQ CHICKEN
{

+, −
}













topping-set

9



Type Hierarchies

A type hierarchy ...

• ... states what kinds of objects we claim exist (the types).

• ... organizes the objects hierarchically into classes with

shared properties (the IST relations).

• ... states what general properties each kind of object has

(the feature and feature value declarations).

10



Pizza Descriptions and Pizza Models





















pizza

CRUST thick

TOPPINGS









vegetarian

OLIVES +

ONIONS +





























How many fully resolved pizza models satisfy this

description?

11



Pizza Descriptions and Pizza Models





















pizza

CRUST thick

TOPPINGS









vegetarian

OLIVES +

ONIONS +





























{ 〈 CRUST , thick 〉 , 〈 TOPPINGS , { 〈 OLIVES , + 〉 ,

〈 ONIONS , + 〉 , 〈 MUSHROOMS , − 〉 } 〉 }

{ 〈 CRUST , thick 〉 , 〈 TOPPINGS , { 〈 OLIVES , + 〉 ,

〈 ONIONS , + 〉 , 〈 MUSHROOMS , + 〉 } 〉 }

12



Pizza Descriptions and Pizza Models





















pizza

CRUST thick

TOPPINGS









vegetarian

OLIVES +

ONIONS +





























How many pizzas-in-the-world do the pizza models

correspond to?

‘type’/‘token’ distinction – applies to sentences as well

13



Unification

















pizza

CRUST thick

TOPPINGS





OLIVES +

HAM −





















t











pizza

TOPPINGS





OLIVES +

ONIONS +















14



Unification





















pizza

CRUST thick

TOPPINGS









OLIVES +

ONIONS +

HAM −





























15



Unification

















pizza

CRUST thick

TOPPINGS





OLIVES +

HAM −





















t

















pizza

CRUST thin

TOPPINGS





OLIVES +

ONIONS +





















16



Unification

φ

17



Unification

















pizza

CRUST thick

TOPPINGS





OLIVES +

HAM +





















t









pizza

CRUST thick

TOPPINGS vegetarian









18



Unification

φ

19



Unification

















pizza

CRUST thick

TOPPINGS





OLIVES +

HAM −





















t









pizza

CRUST thick

TOPPINGS vegetarian









20



Unification

φ

21



A Pizza Type Hierarchy

pizza-thing

pizza




CRUST,

TOPPINGS





topping-set








OLIVES,

ONIONS,

MUSHROOMS









vegetarian non-vegetarian








SAUSAGE,

PEPPERONI,

HAM









22



A New Theory of Pizzas

pizza :











CRUST
{

thick , thin , stuffed
}

ONE-HALF topping-set

OTHER-HALF topping-set











23



Unification











pizza

ONE-HALF





ONIONS +

OLIVES −















t











pizza

OTHER-HALF





ONIONS −

OLIVES +















24



Unification























pizza

ONE-HALF





ONIONS +

OLIVES −





OTHER-HALF





ONIONS −

OLIVES +



























25



Identity Constraints (Tags)































pizza

CRUST thin

ONE-HALF





OLIVES 1

ONIONS 2





OTHER-HALF





OLIVES 1

ONIONS 2



































26



Unification

















pizza

ONE-HALF 1





ONIONS +

OLIVES −





OTHER-HALF 1

















t











pizza

OTHER-HALF





MUSHROOMS −

OLIVES −















27



Unification





















pizza

ONE-HALF 1









ONIONS +

OLIVES −

MUSHROOMS −









OTHER-HALF 1





















28



Unification





















pizza

ONE-HALF 1

OTHER-HALF 1









ONIONS +

OLIVES −

MUSHROOMS −





























29



Unification

















pizza

ONE-HALF 1





ONIONS +

OLIVES +





OTHER-HALF 1 vegetarian

















t











pizza

ONE-HALF





SAUSAGE +

HAM −















30



Unification

φ

31



Concepts relating to feature structures

• Underspecification

• Subsumption

• Defines a partial-order

• Mutual non-subsumption does not entail

incompatibility

• Mutual subsumption does entail equality

• Monotonicity

• Order independence

32



Feature structures as DAGs

• Features label arcs

• Nodes are associated with sub-DAGs or atomic values

• With types, each node is labeled with a type

• Identity constraints represented by reentrancy

33



Feature structures in the grammar

• Associate complex feature structures with both lexical

items and instances of grammatical categories.

• Guide the composition of feature structures for larger

grammatical constituents based on the feature structures

of their component parts.

• Enforce compatibility constraints between specified parts

of grammatical constructions.

34



Example 1: Subject-verb agreement

• What does it mean for the subject and the verb to agree?

• How would we handle agreement in plain CFG?

• What kind of information would it be useful to encode in

features?

• Two ways to make the rules use the features:

• Multiple rules, with feature specified

• Identity constraints

35



Example 2: Subcategorization

• What is subcategorization (e.g., verb subcategorization)?

• How would we handle agreement in plain CFG?

• What kind of information would it be useful to encode in

features?

• Two ways to make the rules use the features:

• Multiple rules, with feature specified

• Identity constraints

36



Example 3: Subcategorization and agreement

• How would we handle both agreement and

subcategorization together in plain CFG?

• Are our new rules for each compatible already, or do

they need modification?

37



Using types to capture linguistic generalizations

• The lexicon is both the repository of idiosyncrasy and

full of redundancy.

• Rather than state

[VAL tr] or [SUBCAT 〈 NP 〉]

on every single transitive verb,

• Create a type transitive-verb, subject to that constraint,

and let individual verbs be instances of that type.

38



Using types to capture linguistic generalizations

• Allow for intermediate generalizations as well:

transitive-verb

strict-transitive ditransitive pp-transitive

39



Using types to capture linguistic generalizations

person

1st 2nd 3rd

number

sing plur
























non3sg-verb

AGR













































NUMBER sing

PERSON







1st

2nd

















[

NUMBER plur
]



























































40



Using types to capture linguistic generalizations

pernum

1or3sg non3sg

3sg 1sg non1sg

2per 1pl 3pl

2sg 2pl




non3sg-verb

AGR
[

PERNUM non3sg
]





41



Summary

• Feature structures can be used to express finer-grained

details within (grammatical) categories.

• Feature structures can be combined with unification.

• Feature structures allow grammar writers to capture

more generalizations.

• Types allow grammar writers to capture even more

generalizations.

42



Next time

• Implementing unification

• Integrating unification into the parser

• More linguistic examples

43


