
October 14, 2004

Chapter 10.1–10.2

CFGs, Parsing

1



Overview

• What is parsing?

• Inadequate grammars for human languages

• lists,

• regex,

• CFG

• A simple top-down parser for CFGs

2



What is Parsing?

• Assigning (syntactic) structure to input strings

• Here: Based on context-free grammars

• What other knowledge systems could a parser use?

3



Some inadequate grammars

• Lists of sentences

• Lists of regular expressions of parts of speech

• Context free grammars

4



Some inadequate grammars

• Lists of sentences: Why?

• Lists of regular expressions of parts of speech

• Context free grammars

5



Why are lists inadequate?

• Learnability

• No predictions about what makes a possible human

language

• No representation of sentence structure

6



Some inadequate grammars

• Lists of sentences

• Lists of regular expressions of parts of speech: Why?

• Context free grammars

7



Why are regular expressions inadequate?

• Redundancy: There are many places where you can get

nominal groups, and you can always get any kind of

nominal group there.

• Structural ambiguity: no representation

• Dependencies (first step towards semantics): no

representation

8



Some inadequate grammars

• Lists of sentences

• Lists of regular expressions of parts of speech

• Context free grammars: What? (then Why?)

9



Context-Free Grammar

• A CFG is a quadruple: 〈C,Σ, P, S〉:

• C is the set of categories (aka non-terminals, e.g., {

S, NP, VP, V };

• Σ is the vocabulary (aka terminals), e.g., { Kim,

snow, adores }

• P is a set of rewrite rules of the form

α→ β1, β2, . . . , βn

• S ∈ C is the start-symbol

• For each rule ‘α→ β1, β2, . . . , β
′

n
∈ P : α ∈

Candβi ∈ C ∪ Σ; 1 ≤ i ≤ n.

10



Context-Free Languages

• CFGs are more powerful than regular expressions/FSAs

– that is, the former can generate languages that the latter

can’t.

• A case in point: anbn

• S→ a S b

• S→ ε

11



Context-Free Languages

• There are languages CFGs can’t generate

(non-context-free languages), notably those that

incorporate cross-serial dependencies, such as Swiss

German.

• Perhaps more importantly, CFGs are cumbersome and

inefficient for representing natural language syntax.

• Most (but not all) modern theories of syntax include a

notion of phrase structure (CFG), and then extend it.

12



Swiss German example (Shieber 1985) (1/2)

. . . mer d’chind em Hans es huus lönd hälfe aastriiche

. . . we the children-ACC Hans-DAT the house-ACC let help paint

‘. . . we let the children help Hans paint the house’

• Cross-serial dependency:

• let governs the case on children

• help governs the case on Hans

• paint governs the case on house

13



Swiss German example (Shieber 1985) (2/2)

• Define a new language f (Swiss German)=

f (d’chind) = a f (Jan säit das mer) = w

f (em Hans) = b f (es huus) = x

f (lönde) = c f (aastriiche) = y

f (hälfe) = d f ([other]) = z

• Let r be the regular language wa∗b∗xc∗d∗y.

• f(SwissGerman) ∩ r = wambnxcmdny

• wambnxcmdny is not context-free

• Context free languages are closed under intersection

• ∴ Swiss German is not context-free.

14



Strongly v. weakly context-free

• A language is weakly context-free if the set of strings in
the language can be generated by a CFG.

• A language is strongly context-free if it is weakly context
free and the set of structures assigned to the strings by
the CFG are the right ones.

• Shieber’s proof shows that Swiss German is weakly not
context-free and therefore a fortiori strongly not
context-free.

• A prior paper by Bresnan et al had argued that Dutch was
strongly not context-free, but the argument was
dependent on linguistic analyses.

15



Toy CFG

• C: { S, VP, PP, NP, V, P }

• Σ: { Kim, snow, Oslo, adores, in, snores }

• P : (see next slide)

• S: S

16



Toy CFG

S→ NP VP NOM→ Kim

VP→ V NP NOM→ snow

VP→ V NOM→ Oslo

VP→ VP PP V→ adores

PP→ P NP V→ snores

NP→ NOM PP P→ in

NP→ NOM

17



Human (deliberate) parsing

• What tree does the toy CFG assign to this sentence:

Kim adores snow in Oslo

• How did you determine that?

18



Four parameters of parsing algorithms

• Top-down v. bottom-up

• Breadth-first v. depth-first

• Best-first v. exhaustive

• Uni- v. bi-directional

19



Outline of TOP-DOWN-PARSE

• Initialize agenda with (S, first word)

• Pop that state off the agenda

• Loop:

• Check if we’re finished, if so return tree

• Check if the node we’re trying to expand is a POS

• If so, check whether the current word of the input has the

current node as a possible POS

• If so, apply the lexical rules of the grammar to that node to

build more trees, and add results to the agenda. (NB -

APPLY-LEXICAL-RULES will have to return (tree, word)

pairs, where the word is the next word in the string.)
20



Outline of TOP-DOWN-PARSE

• Loop:

...

• If the current node wasn’t a part of speech, apply the

non-lexical rules of the grammar to that node, and add the

resulting search states to the agenda.

• If after doing all that, the agenda is empty, reject the

sentence.

• Otherwise, take the next search state of the top of the

agenda, and do the loop again.

21



Corrected version of TOP-DOWN-PARSE

function TOP-DOWN-PARSE(input,grammar) returns a parse tree
agenda← (Initial S tree, Beginning of input)
css← POP(agenda)
loop

if SUCCESSFUL-PARSE?(css) then
return TREE(css)

else
if CAT(NODE-TO-EXPAND(css)) is a POS then

if CAT(NODE-TO-EXPAND(node-to-expand)) ∈
POS(CURRENT-INPUT(css)) then
PUSH(APPLY-LEXICAL-RULE(css,grammar),agenda)

else
PUSH(APPLY-RULES(css,grammar),agenda)

if agenda is empty then
return reject

else
css← POP(agenda)

end 22



Four parameters and TOP-DOWN-PARSE

• Top-down or bottom-up?

• Breadth-first or depth-first?

• Best-first or exhaustive?

• Uni- or bi-directional?

23



Problems with this algorithm

• What happens when you parse Kim adores snow in Oslo?

• What happens when you add the rule NP→ NP PP and

try to parse Kim adores snow in Oslo?

• Inefficient reparsing of subtrees

• ... solve all three with dynamic programming: chart

parsing.

24



A note on the homework

• Assignment 2 is due next Thursday.

• The parsing section of Assignment 2 has you examining

the final state of the chart in a chart parser after it has

parsed various sentences.

• The LKB chart parser is not an implementation of the

Earley chart parser. It only stores completed (or

‘passive’) edges.

25



Overview

• What is parsing?

• Inadequate grammars for human languages

• lists,

• regex,

• CFG

• A simple top-down parser for CFGs

26



Next time

• A better parser for CFGs

• Finite state parsing

27


