
October 7, 2004

Chapter 3.1-3.2

Finite State Morphological Parsing

1



Overview

• Announcements: Assignment 1

• Morphology primer

• Using FSAs to recognize morphologically complex

words

• FSTs (definition, cascading, composition)

• FSTs for morphological parsing

2



Morphology: A Primer (1/2)

• Words consist of stems and affixes.

• Affixes may be prefixes, suffixes, circumfixes, or infixes.

• (Also: root and pattern morphology)

• Phonological processes can sometimes apply to

combinations of morphemes.

3



Morphology: A Primer (2/2)

• Languages vary in the richness of their morphological

systems.

• Languages also vary in the extent to which phonological

processes apply at (and sometimes blur) morpheme

boundaries.

• English has relatively little inflectional morphology, but fairly

rich (if not perfectly productive) derivational morphology.

• Turkish has more than 200 billion word forms.

• Bottom line: We’ll want to be able to parse words

morphologically, for reasons of linguistic interest as well as

practical considerations.

4



Using FSAs to recognize morphological complex

words

• Effectively concatenate FSAs for roots/stems with FSAs

for affixes.

• Develop with word classes as stand ins for lists of words.

• Allow optional multiple affixes (end states with arcs

leading out).

• Spelling change rules later (FSTs).

5



Using FSAs to recognize inflected words

• Why are there two end states in Figure 3.2 (p.67)?

• Why are there two arcs for -ed in Figure 3.3 (p.67)?

• Why are there two arcs labeled reg-verb-stem in Fig 3.3?

6



Using FSAs to recognize derivational morphology

• What sequence of states would the FSA in Fig 3.4 (p.68)

follow to recognize uncoolest?

• unbiggest? (overgeneration)

• What sequence of states would the FSA in Fig 3.5 (p.69)

follow as it tries to recognize unbiggest?

• Why do -er and -est show up on two different arcs in Fig

3.5?

• What sequences of states would the FSA in Fig 3.6

(p.70) follow to recognize talkativeness?

7



And a few more notes...

• The FSA in Fig 3.7 (p.70) is ‘compiled’ from the one in

Fig 3.2 and a small lexicon.

• What does ‘compiled’ mean in this context?

• This FSA is also ‘minimized’. What does that mean?

• How far should morphological parsing go?

8



Finite-State Transducers

• Like FSAs, but with two tapes.

• Define regular relations – mappings between sets of

strings.

• Can be used to recognize, generate, translate or relate

sets.

9



Finite-State Transducers: Mealy machines

• Q: a finite set of states q0, q1, . . . , qN

• Σ: a finite alphabet of complex symbols i : o such that

i ∈ I and o ∈ O. Σ ⊆ I × O. I and O may each include

ε.

• q0: the start state

• F : the set of final states, F ⊆ Q.

• δ(q, i : o): the transition matrix.

10



FSTs: Properties

• A set is closed under an operation if applying that

operation to two elements of the set produces an element

of the set.

• Regular relations are closed under union, but not

necessarily difference, complementation or intersection.

• They are closed under inversion and composition.

11



FSTs: Non-linguistic example

• Father-of relation: {< Suku, Vijay >,< Jim, Emily >,<

Vijay, Toby >}

• Parent-of relation: {< Suku, Vijay >,< Jim, Emily >,<

Vijay, Toby >< Vanaja, Vijay >,< Sheila, Emily >,<

Emily, Toby >}

• Grandfather-of relation: {< Suku, Toby >,< Jim, Toby

>}

• Muthachan-of relation: {< Suku, Toby >}

12



Composing FSTs (1/2)

• If the lower tape of one machine and the upper tape of

the other can be aligned, then go straight from the upper

tape of T1 to the lower tape of T2.

• Composing is equivalent to cascading (different from

compiling).

13



Composing FSTs (2/2)

• Given automata T1 and T2 with state sets Q1 and Q2 and

transition functions δ1 and δ2

• Create set of possible states: {(x, y) | x ∈ Q1, y ∈ Q2}

• Define new transition function:

δ3((xa, ya), i : o) = (xb, yb) if

∃c such that δ1(xa, i : c) = xb

and δ2(ya, c : o) = yb

14



An FST to parse English nouns

• Tnum (Fig 3.9; p.74) parses the same set of nouns that the

FSA in 3.2 recognizes.

• Why does it have more states?

• What are its input and output alphabets?

• The lexicon given for 3.9 has a funny spelling for only

two words. Why?

15



An FST to parse English nouns

• Fig 3.10 (p.75) gives another FST Tstems which

represents the lexicon for Tnum.

• Why can’t the lexicon just be listed?

• Why is there an arc labeled @:@ from q1 to q1?

• If 3.10 and 3.9 are cascaded, which applies first?

16



An FST to parse English nouns

• Fig 3.11 (p.76) gives Tlex, the result of compiling Tstems

and Tnum.

• What sequence of states does Tlex go through in parsing

the input goose and what output does it give?

• What about for geese?

17



Overview

• Morphology primer

• Using FSAs to recognize morphologically complex

words

• FSTs (definition, cascading, composition)

• FSTs for morphological parsing

• Next time: Spelling change rules, human morphological

processing

18


