October 5, 2004
Chapter 2
Regular Expressions & Finite State Automata

Overview

Formal languages (review)
Formal definition of regular languages (reprise)
Extension to regular expressions

Finite state automata

e Definition, DFSA v. NFSA, algorithms for using
FSAs, pseudocode, search

Regular languages v. applications

Formal languages (review)

From the point of view of formal languages theory, a
language is a set of strings defined over some alphabet

The Chomsky hierarchy is a description of classes of
languages.

Languages from a single level in the hierarchy can be
described in terms of the same formal devices.

Regular languages can be described by regular
expressions and by finite-state automata.

Regular languages (context-free languages (
context-sensitive languages (all languages

Three views on the same object (review)

e Regular language: a set of strings

e Regular expression: an expression from a certain formal
language which describes a regular language

e Finite-state automaton: a simple computing machine
which accepts or generates a regular language

Formal definition of regular languages: Symbols
(reprise)

e ¢ IS the empty string

e ¢ IS the empty set

e > Is an alphabet (set of symbols)

Formal definition of regular languages (reprise)

e The class of regular languages over > is formally defined
as:

e ¢ Isaregular language
e Va € X Uce¢, {a} is aregular language.

e If L, and L are regular languages, then so are:

(@ Li-Ly={xy|xz € L,y € Ly} (concatenation)
(b) L; U Ly (union or disjunction)

(c) Li (Kleene closure)

(Jurafsky & Martin 2000:49)

Examples

abc
albc
(a|b)c
a*b

[a]*th[aelou]+[a-z]*

Regular Expressions: (Re)view

e What are the three fundamental operators?

e What other operators are defined in Perl (syntactic
sugar)?

e What kind of applications might you use regular
expressions in?

Regular Expressions: An Extension (1/2)

e Parentheses — () in Perl, \('\) in grep — allow you to
‘save’ part of a string and access it again...

e ... to specify regexps with repetition:
/([a-z]+) \1/
e ... When you’re using regular expressions to rewrite
strings:
s/dog(s?)/dawg\ 1/g;
s/\.(\s+[a-z])/KEEPER\ 1/g;

Regular Expressions: An Extension (2/2)

e NB: This extension to Perl/grep/MS regular expression
syntax actually takes them beyond the realm of regular
expressions. The languages generated by regular
expressions augmented with this kind of memory device
are NOT regular languages — I.e., cannot be recognized
by FSAEs.

So what’s an FSA anyway? (1/2)

e An abstract computing machine

e Consists of a set of states (or nodes in a directed graph)
and a set of transitions (labeled arcs in the graph)

e Three kinds of states: plain, start, final

So what’s an FSA anyway? (2/2)

e FSASs can also be represented as tables:

Input
State | a b ¢
0 1 3 -
1 1 2 3
2: - 3 -
3 - - -

Recognizing a regular language
FSAs can be used to recognize a regular language

Take the FSA and a “tape” with the string to be
recognized.

Start with the start of the tape and the FSA’s start state.

For each symbol on the tape, attempt to take the
corresponding transition in the machine.

If no transition is possible: reject.

When the string is finished, check whether the current
state Is an accept state.

Yes: accept. No: reject.

Notes on Pseudocode

e Basic components of algorithms:
e loops
e conditionals
e Vvariable assignment
e evaluating expressions (e.g., 7 + 1)
e Input values

e return values

D-RECOGNIZE In pseudocode

function D-RECOGNIzE(tape, machine) returns accept or reject
Index «— Beginning of tape
current-state < Initial state of machine
loop
If End of input has been reached then
If current-state is an accept state then
return accept
else
return rgect
elsif transition-table] current-state,tapef[index]] is empty then
return reject
else
current-state < transition-tabl g current-state,tape[index] |
Index < index +1
end

Formal definition of regular languages (for
reference)

e The class of regular languages over 3 is formally defined
as:

e ¢ Isaregular language
e Va € X Uce¢, {a} is aregular language.

e If L, and L, are regular languages, then so are:

(@ Li-Ly={xy|xz € L,y € Ly} (concatenation)
(b) L; U Ly (union or disjunction)

(c) Li (Kleene closure)

(Jurafsky & Martin 2000:49)

Proof of equivalence between FSAs and regular
languages

e Three basic operations:
e Union
e Concatenation

e Closure

e Why isn’t closure a special case of concatenation?

Regular languages are also closed under:

Intersection: DeMorgan’s theorem

Complementation: Interchange final states and non-final
states

Reversal: Use final states as start states, the start state as
the final state, and reverse all arcs.

Difference: L - M = the intersection of L and the
complement of M

NFSAS

The FSAs considered so far are deterministic (DFSAS):
there’s only one choice at each node.

NFSASs include more than one choice at at least one
node.

Those choices might include e-transitions, or unlabeled
arcs that allow one to jump from one node to another
without reading any Input.

Recognizing strings with an NFSA is thus our first
example of “search”.

Two parameters

e Handling choices: backup, look-ahead, or parallelism

e Systematic exploration: depth-first, breadth-first,
dynamic programming, A%, ...

ND-RECOGNIZE (1/3)

function ND-RECOGNIzE(tape, machine) returns accept or reject
agenda < {(Initial state of machine, beginning of tape)}
current-search-state < NEX T(agenda)
loop
If ACCEPT-STATE?(current-search-state) returns true then
return accept
else
agenda <+ agenda
U
GENERATE-NEW-STATES(current-search-state)
If agenda is empty then
return reject
else
current-search-state < NEXT(agenda)
end

ND-RECOGNIZE (2/3)

functionGENERATE-NEW-STATES(current-state)
returnsa set of search-states

current-node < the node the current search state Is in
Index «— the point on the tape the current search-state is looking at
return a list of search-states from transition table as follows:
(transition-table[current-node,¢], index)
U
(transition-table[current-node,tape[index]], index +1)

ND-RECOGNIZE (3/3)

function ACCEPT-STATE?(search-state) returnstrue or false

current-node < the node the search-state Is In
Index «— the point on the tape search-state is looking at
If index Is at the end of the tape
and current-node Is an accept state then
return true
else
return false

A bit more on NFSAS

e ND-RECOGNIZE leave the search strategy (depth-first or
breadth-first) underspecified. Why?

e Any NFSA can be converted to a DFSA. How?

Regular languages v. applications of regexps

Regular expressions can define sets of strings

Applications of regular expressions include:
e search

e search and replace

In this case, the strings matched by the regexp are
substrings of larger strings.

Regexp matching is greedy.
May or may not match multiple instances.

Anchors become useful In search.

Overview

Formal languages (review)
Formal definition of regular languages (reprise)
Extension to regular expressions

Finite state automata

e Definition, DFSA v. NFSA, algorithms for using
FSAs, pseudocode, search

Regular languages v. applications

