
October 5, 2004

Chapter 2

Regular Expressions & Finite State Automata

Overview

• Formal languages (review)

• Formal definition of regular languages (reprise)

• Extension to regular expressions

• Finite state automata

• Definition, DFSA v. NFSA, algorithms for using

FSAs, pseudocode, search

• Regular languages v. applications

Formal languages (review)

• From the point of view of formal languages theory, a

language is a set of strings defined over some alphabet

• The Chomsky hierarchy is a description of classes of

languages.

• Languages from a single level in the hierarchy can be

described in terms of the same formal devices.

• Regular languages can be described by regular

expressions and by finite-state automata.

• Regular languages 〈 context-free languages 〈

context-sensitive languages 〈 all languages

Three views on the same object (review)

• Regular language: a set of strings

• Regular expression: an expression from a certain formal

language which describes a regular language

• Finite-state automaton: a simple computing machine

which accepts or generates a regular language

Formal definition of regular languages: Symbols

(reprise)

• ε is the empty string

• φ is the empty set

• Σ is an alphabet (set of symbols)

Formal definition of regular languages (reprise)

• The class of regular languages over Σ is formally defined

as:

• φ is a regular language

• ∀a ∈ Σ ∪ ε, {a} is a regular language.

• If L1 and L2 are regular languages, then so are:

(a) L1 · L2 = {xy | x ∈ L1, y ∈ L2} (concatenation)

(b) L1 ∪ L2 (union or disjunction)

(c) L∗

1
(Kleene closure)

(Jurafsky & Martin 2000:49)

Examples

• abc

• a|bc

• (a|b)c

• a∗b

• [ˆa]*th[aeiou]+[a-z]*

Regular Expressions: (Re)view

• What are the three fundamental operators?

• What other operators are defined in Perl (syntactic

sugar)?

• What kind of applications might you use regular

expressions in?

Regular Expressions: An Extension (1/2)

• Parentheses — () in Perl, \(\) in grep — allow you to

‘save’ part of a string and access it again...

• ... to specify regexps with repetition:

/([a-z]+) \1/

• ... when you’re using regular expressions to rewrite

strings:

s/dog(s?)/dawg\1/g;

s/\.(\s+[a-z])/KEEPER\1/g;

Regular Expressions: An Extension (2/2)

• NB: This extension to Perl/grep/MS regular expression

syntax actually takes them beyond the realm of regular

expressions. The languages generated by regular

expressions augmented with this kind of memory device

are NOT regular languages – i.e., cannot be recognized

by FSAs.

So what’s an FSA anyway? (1/2)

• An abstract computing machine

• Consists of a set of states (or nodes in a directed graph)

and a set of transitions (labeled arcs in the graph)

• Three kinds of states: plain, start, final

So what’s an FSA anyway? (2/2)

• FSAs can also be represented as tables:

Input

State a b c

0 1 3 -

1: 1 2 3

2: - 3 -

3: - - -

Recognizing a regular language

• FSAs can be used to recognize a regular language

• Take the FSA and a “tape” with the string to be
recognized.

• Start with the start of the tape and the FSA’s start state.

• For each symbol on the tape, attempt to take the
corresponding transition in the machine.

• If no transition is possible: reject.

• When the string is finished, check whether the current
state is an accept state.

• Yes: accept. No: reject.

Notes on Pseudocode

• Basic components of algorithms:

• loops

• conditionals

• variable assignment

• evaluating expressions (e.g., i + 1)

• input values

• return values

D-RECOGNIZE in pseudocode

function D-RECOGNIZE(tape, machine) returns accept or reject
index← Beginning of tape
current-state← Initial state of machine
loop

if End of input has been reached then
if current-state is an accept state then

return accept
else

return reject
elsif transition-table[current-state,tape[index]] is empty then

return reject
else

current-state← transition-table[current-state,tape[index]]
index← index +1

end

Formal definition of regular languages (for

reference)

• The class of regular languages over Σ is formally defined

as:

• φ is a regular language

• ∀a ∈ Σ ∪ ε, {a} is a regular language.

• If L1 and L2 are regular languages, then so are:

(a) L1 · L2 = {xy | x ∈ L1, y ∈ L2} (concatenation)

(b) L1 ∪ L2 (union or disjunction)

(c) L∗

1
(Kleene closure)

(Jurafsky & Martin 2000:49)

Proof of equivalence between FSAs and regular

languages

• Three basic operations:

• Union

• Concatenation

• Closure

• Why isn’t closure a special case of concatenation?

Regular languages are also closed under:

• Intersection: DeMorgan’s theorem

• Complementation: Interchange final states and non-final

states

• Reversal: Use final states as start states, the start state as

the final state, and reverse all arcs.

• Difference: L - M = the intersection of L and the

complement of M

NFSAs

• The FSAs considered so far are deterministic (DFSAs):

there’s only one choice at each node.

• NFSAs include more than one choice at at least one

node.

• Those choices might include ε-transitions, or unlabeled

arcs that allow one to jump from one node to another

without reading any input.

• Recognizing strings with an NFSA is thus our first

example of “search”.

Two parameters

• Handling choices: backup, look-ahead, or parallelism

• Systematic exploration: depth-first, breadth-first,

dynamic programming, A∗, . . .

ND-RECOGNIZE (1/3)

function ND-RECOGNIZE(tape, machine) returns accept or reject
agenda← {(Initial state of machine, beginning of tape)}
current-search-state← NEXT(agenda)
loop

if ACCEPT-STATE?(current-search-state) returns true then
return accept

else
agenda← agenda

∪
GENERATE-NEW-STATES(current-search-state)

if agenda is empty then
return reject

else
current-search-state← NEXT(agenda)

end

ND-RECOGNIZE (2/3)

functionGENERATE-NEW-STATES(current-state)
returns a set of search-states

current-node← the node the current search state is in
index← the point on the tape the current search-state is looking at
return a list of search-states from transition table as follows:

(transition-table[current-node,ε], index)
∪
(transition-table[current-node,tape[index]], index +1)

ND-RECOGNIZE (3/3)

function ACCEPT-STATE?(search-state) returns true or false

current-node← the node the search-state is in
index← the point on the tape search-state is looking at
if index is at the end of the tape
and current-node is an accept state then

return true
else

return false

A bit more on NFSAs

• ND-RECOGNIZE leave the search strategy (depth-first or

breadth-first) underspecified. Why?

• Any NFSA can be converted to a DFSA. How?

Regular languages v. applications of regexps

• Regular expressions can define sets of strings

• Applications of regular expressions include:

• search

• search and replace

• In this case, the strings matched by the regexp are

substrings of larger strings.

• Regexp matching is greedy.

• May or may not match multiple instances.

• Anchors become useful in search.

Overview

• Formal languages (review)

• Formal definition of regular languages (reprise)

• Extension to regular expressions

• Finite state automata

• Definition, DFSA v. NFSA, algorithms for using

FSAs, pseudocode, search

• Regular languages v. applications

