October 5, 2004 Chapter 2 Regular Expressions & Finite State Automata

Overview

- Formal languages (review)
- Formal definition of regular languages (reprise)
- Extension to regular expressions
- Finite state automata
 - Definition, DFSA v. NFSA, algorithms for using FSAs, pseudocode, search
- Regular languages v. applications

Formal languages (review)

- From the point of view of formal languages theory, a *language* is a set of strings defined over some alphabet
- The *Chomsky hierarchy* is a description of classes of languages.
- Languages from a single level in the hierarchy can be described in terms of the same formal devices.
- *Regular languages* can be described by *regular expressions* and by *finite-state automata*.
- Regular languages (context-free languages (context-sensitive languages (all languages

Three views on the same object (review)

- Regular language: a set of strings
- Regular expression: an expression from a certain formal language which describes a regular language
- Finite-state automaton: a simple computing machine which accepts or generates a regular language

Formal definition of regular languages: Symbols (reprise)

- ϵ is the *empty string*
- ϕ is the *empty set*
- Σ is an alphabet (set of symbols)

Formal definition of regular languages (reprise)

- The class of regular languages over Σ is formally defined as:
 - ϕ is a regular language
 - $\forall a \in \Sigma \cup \epsilon, \{a\}$ is a regular language.
 - If L_1 and L_2 are regular languages, then so are:
 - (a) $L_1 \cdot L_2 = \{xy \mid x \in L_1, y \in L_2\}$ (concatenation)
 - (b) $L_1 \cup L_2$ (union or disjunction)
 - (c) L_1^* (Kleene closure)

(Jurafsky & Martin 2000:49)

Examples

- abc
- a|bc
- (a|b)c
- a*b
- [^a]*th[aeiou]+[a-z]*

Regular Expressions: (Re)view

- What are the three fundamental operators?
- What other operators are defined in Perl (syntactic sugar)?
- What kind of applications might you use regular expressions in?

Regular Expressions: An Extension (1/2)

- Parentheses () in Perl, \(\) in grep allow you to 'save' part of a string and access it again...
 - ... to specify regexps with repetition:

 $/([a-z]+) \ (1/$

• ... when you're using regular expressions to rewrite strings:

 $s/dog(s?)/dawg \ 1/g;$

s/(.(s+[a-z])/KEEPER/1/g;

Regular Expressions: An Extension (2/2)

 NB: This extension to Perl/grep/MS regular expression syntax actually takes them beyond the realm of regular expressions. The languages generated by regular expressions augmented with this kind of memory device are NOT regular languages – i.e., cannot be recognized by FSAs. So what's an FSA anyway? (1/2)

- An abstract computing machine
- Consists of a set of states (or nodes in a directed graph) and a set of transitions (labeled arcs in the graph)
- Three kinds of states: plain, start, final

So what's an FSA anyway? (2/2)

• FSAs can also be represented as tables:

	Input		
State	a	b	C
0	1	3	-
1:	1	2	3
2:	-	3	-
3:	-	-	-

Recognizing a regular language

- FSAs can be used to *recognize* a regular language
- Take the FSA and a "tape" with the string to be recognized.
- Start with the start of the tape and the FSA's start state.
- For each symbol on the tape, attempt to take the corresponding transition in the machine.
- If no transition is possible: reject.
- When the string is finished, check whether the current state is an accept state.
- Yes: accept. No: reject.

Notes on Pseudocode

- Basic components of algorithms:
 - loops
 - conditionals
 - variable assignment
 - evaluating expressions (e.g., i + 1)
 - input values
 - return values

D-RECOGNIZE in pseudocode

function D-RECOGNIZE(*tape*, *machine*) **returns** accept or reject *index* \leftarrow Beginning of tape *current-state* \leftarrow Initial state of machine loop if End of input has been reached then if *current-state* is an accept state then return accept else return reject elsif transition-table[current-state,tape[index]] is empty then return reject else $current-state \leftarrow transition-table[current-state,tape[index]]$ *index* \leftarrow *index* +1

end

Formal definition of regular languages (for reference)

- The class of regular languages over Σ is formally defined as:
 - ϕ is a regular language
 - $\forall a \in \Sigma \cup \epsilon, \{a\}$ is a regular language.
 - If L_1 and L_2 are regular languages, then so are:
 - (a) $L_1 \cdot L_2 = \{xy \mid x \in L_1, y \in L_2\}$ (concatenation)
 - (b) $L_1 \cup L_2$ (union or disjunction)
 - (c) L_1^* (Kleene closure)

(Jurafsky & Martin 2000:49)

Proof of equivalence between FSAs and regular languages

- Three basic operations:
 - Union
 - Concatenation
 - Closure
- Why isn't closure a special case of concatenation?

Regular languages are also closed under:

- Intersection: DeMorgan's theorem
- Complementation: Interchange final states and non-final states
- Reversal: Use final states as start states, the start state as the final state, and reverse all arcs.
- Difference: L M = the intersection of L and the complement of M

NFSAs

- The FSAs considered so far are deterministic (DFSAs): there's only one choice at each node.
- NFSAs include more than one choice at at least one node.
- Those choices might include *ϵ*-transitions, or unlabeled arcs that allow one to jump from one node to another without reading any input.
- Recognizing strings with an NFSA is thus our first example of "search".

Two parameters

- Handling choices: backup, look-ahead, or parallelism
- Systematic exploration: depth-first, breadth-first, dynamic programming, A*, ...

ND-RECOGNIZE (1/3)

function ND-RECOGNIZE(*tape, machine*) **returns** accept or reject $agenda \leftarrow \{$ (Initial state of machine, beginning of tape) $\}$ current-search-state \leftarrow NEXT(agenda)

loop

if ACCEPT-STATE?(current-search-state) returns true then
 return accept

else

 $agenda \leftarrow agenda$

 \bigcup

GENERATE-NEW-STATES(current-search-state)

if agenda is empty then

return reject

else

```
current-search-state \leftarrow NEXT(agenda)
```

end

ND-RECOGNIZE (2/3)

functionGENERATE-NEW-STATES(current-state)
returns a set of search-states

 $current-node \leftarrow$ the node the current search state is in $index \leftarrow$ the point on the tape the current search-state is looking at **return** a list of search-states from transition table as follows: $(transition-table[current-node, \epsilon], index)$

(*transition-table*[*current-node*,*tape*[*index*]], *index* +1)

ND-RECOGNIZE (3/3)

function ACCEPT-STATE?(*search-state*) returns true or false

current-node ← the node the search-state is in *index* ← the point on the tape search-state is looking at **if** *index* is at the end of the tape **and** *current-node* is an accept state **then return** true **else return** false

A bit more on NFSAs

- ND-RECOGNIZE leave the search strategy (depth-first or breadth-first) underspecified. Why?
- Any NFSA can be converted to a DFSA. How?

Regular languages v. applications of regexps

- Regular expressions can define sets of strings
- Applications of regular expressions include:
 - search
 - search and replace
- In this case, the strings matched by the regexp are substrings of larger strings.
- Regexp matching is greedy.
- May or may not match multiple instances.
- Anchors become useful in search.

Overview

- Formal languages (review)
- Formal definition of regular languages (reprise)
- Extension to regular expressions
- Finite state automata
 - Definition, DFSA v. NFSA, algorithms for using FSAs, pseudocode, search
- Regular languages v. applications