November 18, 2003 Chapter 18.2-18.5 Text Coherence

Overview

- Leftovers: Centering Theory
- Leftout: FOPL
- Text coherence
- Coherence resolution
- Inference
- Inference-based coherence resolution
- Discourse structure

Review: Pronoun resolution

- Some "hard constraints" on possible antecedents
- Many "soft" constraints, largely salience factors and parallelism
- "Soft" constraints can conflict
- Pronoun resolution algorithms must encode constraints and mediate between them.

Centering Theory

- Discourse model keeps track of entity being "centered" on in each utterance.
- Every utterance (U_n) has:
 - $C_b(U_n)$ the 'backward looking center', which is the entity being centered on after U_n is interpreted.
 - (Exception: For the first utterance in a discourse is undefined.)
 - C_f(U_n) the 'forward looking centers', an ordered (e.g., by grammatical role) list of all the entities referred to in U_n.

Centering Theory

- Every utterance (U_n) has:
 - • •
 - $C_b(U_{n+1})$ = the highest ranked element of $C_f(U_n)$ mentioned in U_{n+1} 'by definition'.
 - $C_p(U_n)$ the *preferred center*, the highest ranking element of $C_f(U_n)$.

Intersentential relationships

	$C_b(U_2) = C_b(U_1)$	$C_b(U_2) \neq C_b(U_1)$
	or undefined $C_b(U_1)$	
$C_b(U_2) = C_p(U_2)$	Continue	Smooth-Shift
$C_b(U_2) \neq C_p(U_2)$	Retain	Rough-Shift

Rules

- Rule 1: If any element of $C_f(U_n)$ is realized by a pronoun in utterance U_{n+1} , then $C_b(U_{n+1})$ must be too.
- Rule 2: Transition states are ordered:
 Continue > Retain > Smooth-Shift > Rough-Shift

Algorithm

- Generate possible C_b - C_f combinations for each possible set of reference assignments.
- Filter by constraints (e.g., syntactic coreference constraints, selectional restrictions, centering rules and constraints).
- Rank by transition orderings.
- Pick the reference assignment that gives the most preferred relation in Rule 2.

First Order Predicate Logic

- Representation of sentence meanings, assuming someone else has figured out lexical meanings
- \rightarrow The meaning of life is life'
- Represent predicate-argument relations, boolean connectives between predicates, universal and existential quantification.
- Rules of reasoning over FOPL are statements well-studied

FOPL: Building blocks

- Predicate names
- Variables
- Boolean connectives: $\land, \lor, \Rightarrow, \neg$
- Quantifiers: \forall, \exists

FOPL: Quantifier scope

- Quantifiers bind particular variables, and take scope over everything to the right of them in an expression (modulo parentheses)
- Quantifiers bind every instance of their variables in their scope.
- Variables outside the scope of any quantifier are 'free'

FOPL: Examples

- A dog barked: $\exists x, e_i \operatorname{dog}(x), \operatorname{barked}(e_i, x), \operatorname{past}(e_i)$
- All dogs bark: $\forall x \exists e_i \operatorname{dog}(x) \Rightarrow \operatorname{bark}(e_i, x)$
- Kim's friend left: ∃x, e_i friend-of(x, k), leave(e_i, x),
 past(e_i)
- Everyone loves someone: $\forall x \exists e_i, y \text{love}(e_i, x, y)$ $\exists y \forall x \exists e_i \text{love}(e_i, x, y)$

Text coherence

- John hid Bill's car keys. He was drunk.
- #John hid Bill's car keys. He likes spinach.

Coherence relations (1 of 2)

- Result: Infer that the state or event asserted by S_0 causes or could cause the state or event asserted by S_1 .
- Explanation: Infer that the state or event asserted by S_1 causes or could cause the state or event asserted by S_0 .
- Parallel: Infer $p(a_1, a_2, ...)$ from the assertion of S_0 and $p(b_1, b_2, ...)$ from the assertion of S_1 , where a_i and b_i are similar, for all i.

Coherence relations (2 of 2)

- Elaboration: Infer the same proposition P from the assertions of S_0 and S_1 .
- Occasion: A change of state can be inferred from the assertion of S₀, whose final state can be inferred from S₁, or a change of state can be inferred from the assertion of S₁, whose initial state can be inferred from S₀.

Coherence resolution

- Determine the relationships between sentences or discourse segments
- Discover inferences that should be made
- Useful for IR, text summarization, pronoun resolution

Inference

• Sound inference, e.g., modus ponens (deduction):

$$\begin{array}{c} \alpha \Rightarrow \beta \\ \alpha \\ \hline \beta \end{array}$$

• Unsound inference, e.g., abduction:

$$\begin{array}{c} \alpha \Rightarrow \beta \\ \beta \end{array}$$

• Associate 'unsound' conclusions with some kind of weight or cost, and make the DEFEASIBLE.

Inference-Based Coherence Resolution

- Establish axioms
 - Pertaining to coherence relations
 - Encoding world knowledge
- Represent discourse segments in the same formalism as the axioms
- Establish coherence by creating a chain of reasoning linking the sentence interpretations that is rooted the assertion of a coherence relation
- In the process, posit unprovable assumptions
- \rightarrow inference

Coherence relation axioms

[1] $\forall e_i, e_j \text{ Explanation}(e_i, e_j) \Rightarrow \text{CoherenceRel}(e_i, e_j)$ [2] $\forall e_i, e_j \text{ Result}(e_i, e_j) \Rightarrow \text{CoherenceRel}(e_i, e_j)$

[3] $\forall e_i, e_j \text{ cause}(e_j, e_i) \Rightarrow \text{Explanation}(e_i, e_j)$ [4] $\forall e_i, e_j \text{ cause}(e_i, e_j) \Rightarrow \text{Result}(e_i, e_j)$

. . .

. . .

World knowledge axioms

- [5] $\forall x, y, e_i \operatorname{drunk}(e_i, x) \Rightarrow$ $\exists e_j, e_k \operatorname{diswant}(e_j, y, e_k) \land \operatorname{drive}(e_k, x) \land \operatorname{cause}(e_i, e_j)$
- [6] $\forall x, y, e_j, e_k \operatorname{diswant}(e_j, y, e_k) \land \operatorname{drive}(e_k, x) \Rightarrow$ $\exists z, e_l, e_m \operatorname{diswant}(e_l, y, e_m) \land \operatorname{have}(e_m, x, z) \land$ $\operatorname{carkeys}(z, x) \land \operatorname{cause}(e_j, e_l)$
- [7] $\forall x, y, z, e_l, e_m \operatorname{diswant}(e_l, y, e_m) \land \operatorname{have}(e_m, x, z) \Rightarrow$ $\exists e_n \operatorname{hide}(e_n, y, x, z) \land \operatorname{cause}(e_l, e_n)$
- [8] $\forall e_i, e_j, e_k \text{ cause}(e_i, e_j) \land \text{ cause}(e_j, e_k) \Rightarrow$ $\text{cause}(e_i, e_k)$

Translation of two statements

[9] $\exists e_1, ck \text{ hide}(e_1, j, b, ck) \land \text{carkeys}(ck, b)$ [10] $\exists e_2 \text{ drunk}(e_2, h)$

Reasoning from coherence to the statements

- [A] Assume coherence, i.e., Coherence-Rel (e_1, e_2)
- [B] Infer Explanation (e_1, e_2) [1],[A]
- [C] Infer cause (e_2, e_1) [3],[B]
- [D] Infer cause $(e_2, e_3) \land (e_3, e_1)$ [8],[C]
- [E] Infer cause $(e_2, e_4) \land (e_4, e_3)$ [8],[D]
- [F] Infer diswant(e_3, j, b) \wedge have(e_5, b, ck) [9],[D],[7]

Reasoning from coherence to the statements

- [G] Infer diswant(e_3, j, e_6) \land drive(e_6, b) [9],[8],[F]
- [H] Infer drunk (e_2, b) [5],[8],[G]
 - But [H] equals [10], if b = h (pronoun resolution)
 - Chain included [1],[9], and [10], so the discourse was coherent.
 - Along the way, we inferred things not explicitly stated in the dicourse: John did not want Bill to drive; This is why John hid Bill's keys.

Reasoning from coherence to the statements

- Serious search problem
- ... managing the size of the search space
- ... choosing the best possibility
- Hobbs et al (1993) deal with this by assigning assumption costs to each inference.

Discourse structure

- Always looking for coherence between adjacent pairs of sentences would give incorrect results.
- Instead, search for structure in discourse, and look for coherence between adjacent discourse segments.
- 'Parsing' discourse structure (a side effect of the above) is useful for summarization, IR, etc. Possibly also for pronoun resolution.

Overview

- Leftovers: Centering Theory
- Leftout: FOPL
- Text coherence
- Coherence resolution
- Inference
- Inference-based coherence resolution
- Discourse structure