November 4, 2003 Ch 12 Probabilistic Parsing Why probabilistic parsing?

- Ambiguity resolution
- Best-first search
- Modeling human processing (computational psycholinguistics)
- Robustness
- Ambituigy resolution with robust grammars

PCFGs

- $G = (N, \Sigma, P, S, D)$
- N: A set of non-terminal symbols
- Σ : A set of terminal symbols (disjoint from N)
- P: A set of productions (or phrase structure rules) $A \rightarrow \beta$ where $A \in N$ and $\beta \in (\Sigma \cup N) *$
- S: A desginated start symbol, selected from N.
- D: a function assigning probabilities to each rule in P.

A closer look at D

- Domain: rules of the grammar (P)
- Range: probabilities *p* (values between 0 and 1)
- For each non-terminal in N, the probabilities of all the rules rewriting N must sum to 1.
- Formallym each p is a conditional probability: $P(A \rightarrow \beta \mid A)$

Sample grammar

$S \rightarrow NP VP$	[.80]	Det \rightarrow that [.05] the [.80)] a [.15]
$S \rightarrow Aux NP VP$	[.15]	Noun \rightarrow book	[.10]
$S \rightarrow VP$	[.05]	Noun \rightarrow flights	[.50]
$NP \rightarrow Det Nom$	[.20]	Noun \rightarrow meal	[.40]
$NP \rightarrow Proper-Noun$	[.35]	$Verb \rightarrow book$	[.30]
$NP \rightarrow Nom$	[.05]	Verb \rightarrow include	[.30]
$NP \rightarrow Pronoun$	[.40]	Verb \rightarrow want	[.40]
$Nom \rightarrow Noun$	[.75]	$Aux \rightarrow can$	[.40]
$Nom \rightarrow Noun Nom$	[.20]	$Aux \rightarrow does$	[.30]
$Nom \rightarrow Proper-Noun Nom$	[.05]	$Aux \rightarrow do$	[.30]
$VP \rightarrow Verb$	[.55]	Proper-Noun \rightarrow TWA	[.40]
$VP \rightarrow Verb NP$	[.40]	Proper-Noun \rightarrow Denver	[.60]
$VP \rightarrow Verb NP NP$	[.05]	Pronoun \rightarrow you [.40] I [.60]	

Using the probabilities

 $n \in T$

• Estimate the joint probability of a parse tree and a sentence: $P(T,S) = \prod p(r(n))$

Joint probability = the probability of the parse:

$$P(T,S) = P(T)P(S | T)$$
 def of joint probability
 $P(S | T) = 1$ the parse tree includes
 $P(T,S) = P(T)$ the sentence

• \rightarrow parse selection: $\hat{T}(S) = \underset{T \in \tau(S)}{\operatorname{argmax}} P(T \mid S)$

Using the probabilities

•
$$\hat{T}(S) = \underset{T \in \tau(S)}{\operatorname{argmax}} P(T \mid S)$$

•
$$P(T \mid S) = \frac{P(T,S)}{P(S)}$$

•
$$\hat{T}(S) = \underset{T \in \tau(S)}{\operatorname{argmax}} \frac{P(T,S)}{P(S)}$$

• P(S) will be constant, if we're considering the parses of one sentence.

•
$$\hat{T}(S) = \underset{T \in \tau(S)}{\operatorname{argmax}} P(T)$$

Using the probabilities II

- Estimate the probability of a string of words constituting a sentence:
 - Unambiguous strings: P(T)
 - Ambiguous strings: $\sum_{T \in \tau(S)} P(T)$
- \rightarrow language modeling in speech recognition
- Probability that a string is a *prefix* of a sentence generated by the grammar (Stolcke 1995), also useful in speech recognition.

Where do the probabilities come from?

• From a treebank, whose trees (can be made to) correspond to the grammar.

$$P(\alpha \to \beta \mid \alpha) = \frac{Count(\alpha \to \beta)}{\Sigma_{\gamma}Count(\alpha \to \gamma)} = \frac{Count(\alpha \to \beta)}{Count(\alpha)}$$

• By parsing a corpus, and counting rule occurrences as weighted by the probability of each parse – do this iteratively with the **Inside-Outside** algorithm.

A Bottom-Up Chart Parser (CKY)

for $(0 \le i \le length(input))$ do $chart_{[i,i+1]} \leftarrow \{ \alpha \mid \alpha \rightarrow input_i \};$ for $(0 \le l \le input)$ do for $(0 \le i < length(input) - 1)$ do for $(1 \le j \le l)$ do if $(\alpha \rightarrow \beta_1 \beta_2 \in P \land$ $\beta_1 \in chart_{[i,i+j]} \land \beta_2 \in chart_{[i+j,i+l+1]}$) then $chart_{[i,i+l+1]} \leftarrow chart_{[i,i+l+1]} \cup \{\alpha\};$

Probabilistic CKY

```
function CKY(words, grammar) returns most probable parse w/probability
   Create and clear \pi[#words,#words,#non-terms]
   for i \leftarrow 1 to #words
       for A \leftarrow 1 to #non-terms
          if ( A \rightarrow w_i is in grammar ) then
              \pi[i, i, A] \leftarrow P(A \rightarrow w_i)
   for span \leftarrow 2 to \#words
       for begin \leftarrow 1 to \#words - span + 1
          end \leftarrow begin + span - 1
          for m \leftarrow begin to end - 1
              for A, B, C \leftarrow 1 to #non-terms
                 prob = \pi[begin,m,B] \times \pi[m+1,end,C] \times P(A \rightarrow BC)
                 if (prob > \pi[begin, end, A]) then
                     \pi[begin,end,A] = prob
                    back[begin,end,A] = \{m,B,C\}
   return BUILD_TREE(back[1,#words,1]), \pi[1,#words,1]
```

Summary

- Probabilistic CFGs
- Uses of probabilities
- Learning probabilities
- Probabilistic chart parsing