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Chapter 11.1-11.2
Feature structures



Problems with CFG

e Potentially arbitrary rules
e Gets clunky quickly with cross-cutting properties

e (Not quite powerful enough for natural languages)

Solution: Replace atomic node labels with feature structures.



Some grammatical theories which explicitly use
feature structures and unification

e GPSG: Generalized Phrase Structure Grammar

e HPSG: Head-driven Phrase Structure Grammar
http://hpsg.stanford.edu

e LFG: Lexical Functional Grammar
http://www-Ifg.stanford.edu/Ifg/

e Construction Grammar
http://www.constructiongrammar.org/

e Unification Categorial Grammar



Modeling language (HPSG)

Two Kkinds of modeling:
e Speakers’ internalized grammars

e Set of possible English sentences



Modeling language (HPSG)

Three things involved in modeling:
e Real-world entities
e Models

e Descriptions of models



Feature Structure Descriptions
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Type Hierarchies

A type hierarchy ...
e ... states what kinds of objects we claim exist (the types).

e ... organizes the objects hierarchically into classes with
shared properties (the IST relations).

e ... states what general properties each kind of object has
(the feature and feature value declarations).



Pizza Descriptions and Pizza Models
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How many fully resolved pizza models satisfy this
description?



Pizza Descriptions and Pizza Models
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Pizza Descriptions and Pizza Models
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How many pizzas-in-the-world do the pizza models
correspond to?

‘type’/‘token’ distinction — applies to sentences as well
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Unification
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Unification
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pizza .

A New Theory of Pizzas
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Identity Constraints (Tags)
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Unification
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Unification
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Unification



Concepts relating to feature structures

Underspecification

Subsumption
e Defines a partial-order

e Mutual non-subsumption does not entail
Incompatibility

e Mutual subsumption does entail equality
Monotonicity

Order independence



Feature structures as DAGS

Features label arcs
Nodes are associated with sub-DAGSs or atomic values
With types, each node is labeled with a type

|dentity constraints represented by reentrancy



Representing feature structures in Lisp

(defstruct dag
forward type arcs copy)

(defstruct arc
feature val ue)



Feature structures in the grammar

e Associate complex feature structures with both lexical
Items and instances of grammatical categories.

e Guide the composition of feature structures for larger
grammatical constituents based on the feature structures
of their component parts.

e Enforce compatibility constraints between specified parts
of grammatical constructions.



Using types to capture linguistic generalizations

e The lexicon is both the repository of idiosyncrasy and
full of redundancy.

e Rather than state
[VAL tr] or [SUBCAT ( NP )]

on every single transitive verb,

e Create a type transitive-verb, subject to that constraint,
and let individual verbs be instances of that type.



Using types to capture linguistic generalizations

e Allow for intermediate generalizations as well:

trangtive-verb

- T

strict-transitive ditransitive  pp-transitive



Using types to capture linguistic generalizations

person number

T T
st 2nd 3rd sing plur

_nonSSg-verb

- =)
NUMBER Sing

PERSON st
AGR $ ond )

[NUMBER plur}
\

J _



Using types to capture linguistic generalizations
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Summary

Feature structures can be used to express finer-grained
details within (grammatical) categories.

Feature structures can be combined with unification.

Feature structures allow grammar writers to capture
more generalizations.

Types allow grammar writers to capture even more
generalizations.



Next time

e Implementing unification
e Integrating unification into the parser

e More linguistic examples (?)



