October 21, 2003
Chapter 11.1-11.2
Feature structures

Problems with CFG

e Potentially arbitrary rules
e Gets clunky quickly with cross-cutting properties

e (Not quite powerful enough for natural languages)

Solution: Replace atomic node labels with feature structures.

Some grammatical theories which explicitly use
feature structures and unification

e GPSG: Generalized Phrase Structure Grammar

e HPSG: Head-driven Phrase Structure Grammar
http://hpsg.stanford.edu

e LFG: Lexical Functional Grammar
http://www-Ifg.stanford.edu/Ifg/

e Construction Grammar
http://www.constructiongrammar.org/

e Unification Categorial Grammar

Modeling language (HPSG)

Two Kkinds of modeling:
e Speakers’ internalized grammars

e Set of possible English sentences

Modeling language (HPSG)

Three things involved in modeling:
e Real-world entities
e Models

e Descriptions of models

Feature Structure Descriptions

FEATURE; VALUE, |
FEATURE, VALUE,

FEATURE, VALUE, |

A Pizza Type Hierarchy

pizza-thing
pizza topping-set
CRUST, | OLIVES, |
TOPPINGS ONIONS,
i i MUSHROOMS
/\
vegetarian non-vegetarian
| SAUSAGE,
PEPPERONI,

HAM

TYPE FEATURES/VALUES |IST

pizza-thing

pizza CRUST {thick, thin, stuffed }| | PiZz2-thing
TOPPINGS topping-set]

topping-set OLIVES { Lo } pizza-thing
ONIONS {+, _ }
MUSHROOMS {+, -1

vegetarian topping-set

non-vegetarian | [saUSAGE topping-set

+, —

BBQ CHICKEN <+, —

{+-}
PEPPERON! {+, _}
{+-}

Type Hierarchies

A type hierarchy ...
e ... states what kinds of objects we claim exist (the types).

e ... organizes the objects hierarchically into classes with
shared properties (the IST relations).

e ... states what general properties each kind of object has
(the feature and feature value declarations).

Pizza Descriptions and Pizza Models
i i
CRUST thick

_vegetarian
TOPPINGS |OLIVES +
ONIONS +

How many fully resolved pizza models satisfy this
description?

Pizza Descriptions and Pizza Models

pizza
CRUST thick

_vegetarian
TOPPINGS |OLIVES +
ONIONS +

% (CRUST , thick), (TOPPINGS, { { OLIVES, +),
(ONIONS , +), (MUSHROOMS , —) }) }
{
<

(CRUST , thick) , { TOPPINGS , { (OLIVES, +),
ONIONS, +), (MUSHROOMS , +) }) }

Pizza Descriptions and Pizza Models
i i
CRUST thick

_vegetarian
TOPPINGS |OLIVES +
ONIONS +

How many pizzas-in-the-world do the pizza models
correspond to?

‘type’/‘token’ distinction — applies to sentences as well

_pizza
CRUST

TOPPINGS

Unification

thick

OLIVES +
HAM —

pizza

TOPPINGS

OLIVES

ONIONS

+ -

Unification

_pizza
CRUST

TOPPINGS

thick

ONIONS +
HAM —

OLIVES -+

_pizza
CRUST

TOPPINGS

thick

HAM

Unification

OLIVES +

pizza
CRUST

TOPPINGS

thin
OLIVES +
ONIONS +

Unification

_pizza
CRUST

TOPPINGS

Unification

thick
OLIVES +
HAM +

_pizza
CRUST thick

TOPPINGS vegetarian

Unification

_pizza
CRUST

TOPPINGS

thick

HAM

Unification

OLIVES +

_pizza
CRUST thick

TOPPINGS vegetarian

Unification

A Pizza Type Hierarchy

pizza-thing
pizza topping-set
CRUST, | OLIVES, |
TOPPINGS ONIONS,
i i MUSHROOMS
/\
vegetarian non-vegetarian
| SAUSAGE,
PEPPERONI,

HAM

pizza .

A New Theory of Pizzas

CRUST {thick thin . stuffed}

ONE-HALF topping-set

OTHER-HALF topping-set

pizza

ONE-HALF

Unification

ONIONS +

OLIVES -

pizza

OTHER-HALF

ONIONS -

OLIVES +

Unification

_pizza
ONIONS
ONE-HALF
OLIVES
ONIONS
OTHER-HALF
OLIVES

Identity Constraints (Tags)

pizza]
CRUST thin

OLIVES
ONE-HALF

ONIONS

OLIVES
OTHER-HALF

ONIONS

Unification

pizza -

_ - pizza
ONIONS + i il
ONE-HALF L MUSHROOMS -
OLIVES — OTHER-HALF
i | OLIVES —

OTHER-HALF L |

Unification

_pizza

ONE-HALF

OTHER-HALF

'ONIONS n
OLIVES _

MUSHROOMS —

Unification

_pizza
ONE-HALF

OTHER-HALF

'ONIONS n
OLIVES _

MUSHROOMS —

Unification

_pizza | _
_ - pizza
ONIONS + I [
ONE-HALF L] SAUSAGE +
OLIVES + ONE-HALF DAY

OTHER-HALF [i] vegetarian . . |

Unification

Concepts relating to feature structures

Underspecification

Subsumption
e Defines a partial-order

e Mutual non-subsumption does not entail
Incompatibility

e Mutual subsumption does entail equality
Monotonicity

Order independence

Feature structures as DAGS

Features label arcs
Nodes are associated with sub-DAGSs or atomic values
With types, each node is labeled with a type

|dentity constraints represented by reentrancy

Representing feature structures in Lisp

(defstruct dag
forward type arcs copy)

(defstruct arc
feature val ue)

Feature structures in the grammar

e Associate complex feature structures with both lexical
Items and instances of grammatical categories.

e Guide the composition of feature structures for larger
grammatical constituents based on the feature structures
of their component parts.

e Enforce compatibility constraints between specified parts
of grammatical constructions.

Using types to capture linguistic generalizations

e The lexicon is both the repository of idiosyncrasy and
full of redundancy.

e Rather than state
[VAL tr] or [SUBCAT (NP)]

on every single transitive verb,

e Create a type transitive-verb, subject to that constraint,
and let individual verbs be instances of that type.

Using types to capture linguistic generalizations

e Allow for intermediate generalizations as well:

trangtive-verb

- T

strict-transitive ditransitive pp-transitive

Using types to capture linguistic generalizations

person number

T T
st 2nd 3rd sing plur

_nonSSg-verb

- =)
NUMBER Sing

PERSON st
AGR $ ond)

[NUMBER plur}
\

J _

Using types to capture linguistic generalizations

pernum

1@\10@99
Msg

er 1pl 3pl
2{\&0!

_nonBSg-verb

AGR [PERNUM nonSSg}

Summary

Feature structures can be used to express finer-grained
details within (grammatical) categories.

Feature structures can be combined with unification.

Feature structures allow grammar writers to capture
more generalizations.

Types allow grammar writers to capture even more
generalizations.

Next time

e Implementing unification
e Integrating unification into the parser

e More linguistic examples (?)

