
October 16, 2003

Chapter 10.3–10.6

Parsing



Outline ofTOP-DOWN-PARSE

• Initialize agenda with (S, first word)

• Pop that state off the agenda

• Loop:

• Check if we’re finished, if so return tree

• Check if the node we’re trying to expand is a POS

• If so, check whether the current word of the input has the

current node as a possible POS

• If so, apply the lexical rules of the grammar to that node to

build more trees, and add results to the agenda. (NB -

APPLY-LEXICAL -RULES will have to return (tree, word)

pairs, where the word is the next word in the string.)



Outline ofTOP-DOWN-PARSE

• Loop:

...

• If the current node wasn’t a part of speech, apply the

non-lexical rules of the grammar to that node, and add the

resulting search states to the agenda.

• If after doing all that, the agenda is empty, reject the

sentence.

• Otherwise, take the next search state of the top of the

agenda, and do the loop again.



Corrected version ofTOP-DOWN-PARSE

function TOP-DOWN-PARSE(input,grammar) returns a parse tree
agenda← (Initial S tree, Beginning of input)
css← POP(agenda)
loop

if SUCCESSFUL-PARSE?(css) then
return TREE(css)

else
if CAT(NODE-TO-EXPAND(css)) is a POSthen

if CAT(NODE-TO-EXPAND(node-to-expand)) ∈
POS(CURRENT-INPUT(css)) then
PUSH(APPLY-LEXICAL -RULE(css,grammar),agenda)

else
PUSH(APPLY-RULES(css,grammar),agenda)

if agendais emptythen
return reject

else
css← POP(agenda)

end



Problems withTOP-DOWN-PARSE

• Infinite loops with left-recursive grammars

• Ambiguity

• Inefficient reparsing of subtrees



Dynamic Programming

• First introduced by Bellman (1957)

• A table-driven method of solving problems by

combining solutions to sub-problems

• In this context, what is the problem?

• What is a sub-problem?

• How are sub-problems combined?



The Earley Chart Parser: Chart and Dotted Rules

• For a sentence of N words, the chart contains N+1 cells.

• Each cell contains a list of states.

• A state consists of: a local subtree, information about the

degree of completion of that subtree, and information

about how much of the string corresponds to the subtree.

• For example (in dotted-rule notation):

• S → •V P, [0, 0]

• NP → Det •Nominal, [1, 2]

• V P → V NP•, [0, 3]



The Earley Chart Parser, Outline

• Add the initial S (gamma→ •S, [0,0]) to the chart at

position 0.

• Loop, for each of the rest of the cells in the chart:

• If the state is incomplete, and the category to the right of

the dot is not a POS, add (if not redundant) new states to

the chart in the current position for each rule that expands

that category. These new states all have the dot at the

beginning of the rule, and the same span of the string as

the rule in the original state. (PREDICTOR)



The Earley Chart Parser, Outline

• Loop (continued):

• If the state is incomplete, and the category to the right of

the dot (‘B’) is a POS, and B is a possible POS for the next

word in the string, add the ruleB → word• (if not

redundant) to the next cell in the chart. (SCANNER)

• If the state is complete (dot all the way to the right), look

for other states in the current cell which are currently

seeking a daughter of the same category as the mother of

this state. For each one of those, add a state (if not

redundant) to thenextcell, with the dot moved over one,

and the span increased to the end of the current word.

(COMPLETER)



The Earley Chart Parser

• In which cell of the chart does one find the spanning

edge(s)?

• Is the Earley algorithm top-down or bottom-up?

• Best-first or exhaustive?

• Uni-directional or bi-directional?

• Breadth-first or depth-first?



How does the Earley algorithm solve these

problems?

• Ambiguity

• Inefficient reparsing of subtrees

• Infinite loops with left-recursive grammars



Expanding the Chart

• Parsing is apparently an exponential-time problem.

• The Earley alogrithm doesrecognitionin polynomial

time (O(N 3)).

• Returning the trees is still potentially exponential.

• How would this alogrithm return the trees?



Finite-State or ‘Chunk’ Parsing

• A parser such as the Earley Chart Parser is only as good

as the grammars it interprets.

• When robustness is more important than precision,

shallowparsing techniques are used instead.

• Finite-State or ‘Chunk’ parsers recognize patterns within

sentences as ‘Noun groups’, ‘Verb groups’ etc.

• They can be used to return partial results, even if the

whole string can’t be treated.



Finite-State or ‘Chunk’ Parsing

• More modern robust, shallow processing techniques

involve machine learning to deal with learning all the

different patterns.

• One example: RASP (Robust Accurate Statistical

Parsing)

http://www.cogs.susx.ac.uk/lab/nlp/rasp

• The European project Deep Thought is currently

investigating methods for combining deep and shallow

parsing for knowledge-intensive information extraction

http://www.project-deepthought.net/



Coming up next...

• Adding unification to enable more interesting grammars.

• Another parsing algorithm, with a different kind of chart.

• Probabilistic parsing, for meaningful best-first


