
October 14, 2003

Chapter 10.1–10.2

CFGs, Parsing



What is Parsing?

• Assigning (syntactic) structure to input strings

• Here: Based on context-free grammars

• What other knowledge systems could a parser use?



Context-Free Grammar

• A CFG is a quadruple:〈C,Σ, P, S〉:

• C is the set ofcategories(akanon-terminals, e.g.,{

S, NP, VP, V};

• Σ is thevocabulary(akaterminals), e.g.,{ Kim,

snow, adores}

• P is a set ofrewrite rulesof the form

α→ β1, β2, . . . , βn

• S ∈ C is thestart-symbol

• For each rule‘α→ β1, β2, . . . , β
′

n
∈ P : α ∈

Candβi ∈ C ∪ Σ; 1 ≤ i ≤ n.



Context-Free Languages

• CFGs are more powerful than regular expressions/FSAs

– that is, the former can generate languages that the latter

can’t.

• A case in point:anBn

• S→ a S b

• S→ ε



Context-Free Languages

• There are languages CFGs can’t generate

(non-context-free languages), notably those that

incorporatecross-serial dependencies, such as Swiss

German.

• Perhaps more importantly, CFGs are cumbersome and

inefficient for representing natural language syntax.

• Most (but not all) modern theories of syntax include a

notion of phrase structure (CFG), and then extend it.



Toy CFG

• C: { S, VP, PP, NP, V, P}

• Σ: { Kim, snow, Oslo, adores, in, snores}

• P : (see next slide)

• S: S



Toy CFG

S→ NP VP NP→ Kim

VP→ V NP NP→ snow

VP→ V NP→ Oslo

VP→ VP PP V→ adores

PP→ P NP V→ snores

NP→ NP PP P→ in



Human (deliberate) parsing

• What tree does the toy CFG assign to this sentence:

Kim adores snow in Oslo

• How did you determine that?



Four parameters of parsing algorithms

• Top-down v. bottom-up

• Breadth-first v. depth-first

• Best-first v. exhaustive

• Uni- v. bi-directional



A basic top-down parser (p.366)

function TOP-DOWN-PARSE(input,grammar) returns a parse tree
agenda← (Initial S tree, Beginning of input)
css← POP(agenda)
loop

if SUCCESSFUL-PARSE?(css) then
return TREE(css)

else
if CAT(NODE-TO-EXPAND(css)) is a POSthen

if CAT(node-to-expand) ⊂ POS(CURRENT-INPUT(css)) then
PUSH(APPLY-LEXICAL -RULE(css),agenda)

else
PUSH(APPLY-RULES(css,grammar),agenda)

if agendais emptythen
return reject

else
css← NEXT(agenda)

end



Problems with this algorithm

• Infinite loops with left-recursive grammars

• Ambiguity

• Inefficient reparsing of subtrees

• ... solve all three with dynamic programming: chart

parsing.



A note on the homework

• Assignment 2 will probably be easier than Assignment 1

• That doesn’t mean you should get started soon!

• The parsing section of Assignment 2 has you examining

the final state of the chart in a chart parser after it has

parsed various sentences.

• The LKB chart parser is not an implementation of the

Earley chart parser. It only stores completed (or

‘passive’) edges.


