October 14, 2003
Chapter 10.1-10.2
CFGs, Parsing



What is Parsing?

e Assigning (syntactic) structure to input strings
e Here: Based on context-free grammars

e What other knowledge systems could a parser use?



Context-Free Grammar

e ACFG is aquadruple(C,, P, S):

e ('is the set otategorieqakanon-terminalse.g.,{
S, NP, VP, V};

e Y is thevocabulary(akaterminalg, e.g.,{ Kim,
snow, adores

e P IS a set ofrewrite rulesof the form
o — ﬁlyﬁ??‘ . . 7671

e S € C'Is thestart-symbol

e Foreachrulea — (1,05,...,0, € P:a €
Cands; e CUX:;1 <1 <n.



Context-Free Languages

e CFGs are more powerful than regular expressions/FSAs
— that Is, the former can generate languages that the latter

cant.

e A case In pointa™B"
e S—asSh

o S—«¢



Context-Free Languages

e There are languages CFGs can'’t generate
(non-context-free languages), notably those that
Incorporatecross-serial dependenciesich as Swiss
German.

e Perhaps more importantly, CFGs are cumbersome and
Inefficient for representing natural language syntax.

e Most (but not all) modern theories of syntax include a
notion of phrase structure (CFG), and then extend It.



Toy CFG

C:{S,VP,PP,NP, V, B
>.: { Kim, snow, Oslo, adores, in, snorgs
P: (see next slide)

S: S



Toy CFG

S— NP VP NP— Kim
VP — V NP NP — snow
VP —V NP — Oslo
VP — VP PP V— adores
PP— P NP V — snores

NP — NP PP P—iIn



Human (deliberate) parsing

e What tree does the toy CFG assign to this sentence:

Kim adores snow in Oslo

e How did you determine that?



Four parameters of parsing algorithms

Top-down v. bottom-up
Breadth-first v. depth-first
Best-first v. exhaustive

Uni- v. bi-directional



A basic top-down parser (p.366)

function TOP-DOWN-PARSHINput,grammay returns a parse tree
agenda— (Initial S tree, Beginning of inpiit
css«— Popr(agenda
loop
If SUCCESSFUIPARSE?(CcS9 then
return TREE(CSY
else
If CAT(NODE-TO-EXPAND(CS9) iIs a POShen
If CAT(node-to-expandC POSCURRENTINPUT(CSY) then
PUSH(APPLY-LEXICAL-RULE(cs9,agenda
else
PUSH(APPLY-RULES(css,grammaragenda
If agendais emptythen
return reject
else
CSS«+— NEXT(agenda
end



Problems with this algorithm

Infinite loops with left-recursive grammars
Ambiguity
Inefficient reparsing of subtrees

... Solve all three with dynamic programming: chart
parsing.



A note on the homework

Assignment 2 will probably be easier than Assignment 1
That doesn’t mean you should get started soon!

The parsing section of Assignment 2 has you examining
the final state of the chart in a chart parser after it has
parsed various sentences.

The LKB chart parser is not an implementation of the
Earley chart parser. It only stores completed (or
‘passive’) edges.



