4.2 Multilocus linkage analysis
4.2 1 Meiosis indicators at multiple loci
For multiple loci, j, j=1,... L

S_ij = 0 if gene at meiosis i locus | is parent's maternal
= 1 ifgene at meiosisi locus Jis parent's paternal.

WedefmeSv() {5_j. .m} for j=1,...L

mii) ={S_ijj=1....LLfor i=1,...m
where m is the number of meioses in the pedigree, and L the
number of loci along the chromosome

Dependence of the {S_ij}
Smiij are independent overi,i=1,...m
S ijare independent for loci | on different chromosome pairs
Svij) are dependent among loci | on the same chromosome pair

4.2.2 Conditional independence
(no interference)

Assume that L loci are ordered 1,.. L along the chromosome
Let the intervals between successive loci be (1), I(L— 1)

Let T(i, j)=1 if a gamete resulting from meiosis i is recombinant on
interval 1)y, and T{i, ]} =0 otherwise (j=1,... L-1).

Then,in a given meiosisi
T{.j) = 1 ifS_ij# S_ij+1,

and T(.j) = 0ifS_jj=5_j+1 forj=1_ .11
A model for Sm(i) is equivalent to a model for (T{i.1} ... T{i.L-10
The simplest models for meiosis assume no inferfarance
In this case the T{i j} are indspendent overiand |
Then the S_ij are first-order Markov over loci |, with meioses i
always being independent
COne way to express this is that

PS_0i [S_1,..,S_0-1) = P(S_j | 5.0 -1) sothat

PiSmiiy) = PIS_i 1 N 4=21"L P{S_ij|S_ij-1) or,
combining the meioses

PUS_iH = PEY(1)) N_{=2"L P(Sv(j} | Svj-1)) (see alsod 2.4)

Another way of expressing this Markov dependence is thraugh the
probahility of any glven indicator S_jj conditional on all the others
S_ij given S_{-(i ]} éS kI (ki) # (IJ%} depends anly on the indicators far
thE same mEnsis and tHe twio neighboring loci
Fors=01 P(S_jj=s | S_{-(ij)}) =P(S_ij=s | S_ij+1, S_ij-1) whichis
pmpnmnna\ fo
RU-DME-S T 0= ORI T-=-5 11T %
xp()ls-S i+ 1] x (1 - plt1-1s-S_0j+1[} where
a0y =P(Tij) = 1) = P(S_jj # S_ij+1) is the recombination frequency in 1(j)

Mate that the equation just counts the recombination/non-recombination
events in intervals 1(-1) and 1(j}, implied by the three indicatars
(S_ij-1,5_i)=s, 5_1j+1)

Recall in Chapter 2 we discussed for a single locus the equations
F'(Y 1= A8 0} POY S PUS_Y = Z{S i PY [JHS_i) PUS_IH
= I_J PY|Jd)P), where Jwas the ihd pattern determined by {S_ij}
There are fewser ibd patterns than values of {S_ij}. However, although the
component S_ij are Markov over loci |, gene iBd patterns are not

Different values of Sv(j) may give rise to the same ibd pattern at locus |

Grouping the states of a Markov chain does not, in general, produce a
Markow chain. So to use the Markov dependence, we have to use {S_ij}

4.2.3 The hidden Markov structure

The conditional independence structure of data, in the absence of
genetic interference

The figure shows the Markoy dependence of the Sv{j)

Also the data Yv(j) at locus | depends only on the inheritance Sy(j) at
that locus, {and on allele frequencies etc. for locus j)

Given Sv(j), {Yv(k) k=(j+1), .. L} Yv(j), and Sv{j-1) are mutually
independent

OR, given Svij), {Yv{k)k=1
mutually independent

=Y, ), and Sv(j+1) are

4.2.4 Baum algorithm for total probability

For data observations Y=(v(j), j=1.....L), we want to compute P{Y)}
Due to the first-order Markov dependence of the Sv(j), we have
Py = Z{S_}PHS_ijbY) = Z_{S_ij} PIY [ {S_ih) PHS_H
= Z_{S_i (PSW(1) N_G=2L P{SV) | Sv(-1)) )
{ N_Gi=14°L POYY() | Sv())
We can go forwards. Let Y2 = (Yv(1), Yv(j)), the data along the
chromosome up to and including locus | Mote™¥ '= v (L)
Now define the joint probability
RE_jis) = P{Ywik), k=1,... -1, Svli=s) = P{Y™{j-1), Sw{jj=s)
with R*_1{s) = P{Sw({1} =5)
Then forj=12,. i1
Re_{i+1)(s) = E_s* ( P(Sw(j+1) =s | Sw(])=s")
POYV() | Swil) =s*) R*_its") ),
With P{Y) = Z_s* P{Yw(L) | Sv(l) =s*] R*_L (")

4.2.5 Lander-Green algorithm

We can compute PUY() | Sv())) for simple traits— recall the example at end

of Chapter 2. Then the computation method of 4.2.4 can he applied

Howeever this exact computation is limited to small pedigrees. If there are m

meioses on the pedigree, then SV(JQ can take 2°m values, Computations

involve, for each locus, transitions from the 2*m values of Sv(j) to the 2*m

values of Sw(j+1).

Computation is of order £ 2*m 2*m= L 4*m. For Genehunter, far a pedigree

with n individuals, f of whom are founders, m=2n-3f, and m< 16

Addmuna\ly for each locus and for each value of Sv(j), we must compute
(Yv(J) |'5v(j) ). Although this is easy for given Sv(i), this limits size of

pedigree

Actually better a\%nnthms using independence of meioses give us a

factored HiiNV which means we can get an algorithm of order L m 2%m but it

is still exponential in pedigree size.

The map-specific lod score is lag_10 (L(d)/L(= )R wihere d is the

hypothesized chrormosomal location of the trait (ocus measured in genetic

distance, and d=+ corresponds to p=1/2, ar absence of linkage. (Far

Genehunter, distances are relative to first marker at d=0)

The locafion scare is defined as 2 log_e (L(d)L{=}]. Under apgmprlate

conditions, this statistic has approximately a chi- squared distribution in the

absence of linkage

We consider lod scaores for the location d, rather than location scores

Genehunter, Allegro, and Merlin are packages using this general approach




4.2.6 EM algorithm
for estimating genetic maps

Consider the complete-data log-likelihood

log PUS_ILL Y) = log (PISV{1) +E_{=2}"L log (PSv(]) [Sv(-1)))

+ I {i=11" log (P{Yv()) | SV} )

MNowi recombination parameters enter through

log (P{Sv() | Svi)-1))) =

R_{m -1} loglp_{m 13 + (M_rn — R_{m -1} log (1- p_{mJ-1})

+ R_{f}-1}Hoglp_{fj-1}) +(M_f - R_{fj-1]) log {1- p_{f}- 1}
where R_{m -1} = Z_{i male} | S_{i.j} - S_{i -1} | is the number of
recombinations in interval I{j-1) in male meioses, p_{m j-1} the
recombination rate, and M_m is the total number of male meioses
scored inthe pedigree.
and similarly R_{f -1}, p_{fJ-1}} and M_f for female meioses
The expected complete-data log-likelihood requires only
computation of

RF_{m -1} = E{R_{mj-1} 1Y) =Z_{imale}E(| S_ij- S_i}-11]Y)
and similarly R*_{f }-1}

Since the complete-data log-likelihood is a simple binomial log-

likelihood, the M-step sets the new estimate of p_{m -1} to

R*_{m j-1M_m, and similarly for allintervals j=2.3,... L and for bath

the male and female meioses

MNote that P{Sv(j-1), Sv(j} | Y ) = P(Sw(j-1), Sv(j} . ¥ ) PIY)

and P{Sv{- 1}, Swlid Y ) = POYM-2), Swii-10 PUYw(-1) | Svi-13)
POV Sv(- 1) POO) | S PO+, L YD) TS

The first term is just the R*_{-1}{Swv({j-1)) we had in the Baum

algorithm, the second and fourth are just single-locus probabilities of

data given inheritance, the third is just the recombinationfnon-

recombination transitions, and the final one can be computed by

backwards {(conditional} wersion of the Baum algorithm

Maote there are many different forms of the Baum algorithm 4.2 4, all

closely related but providing probabilities of slightly different events

The EM algorithm is thus readily implemented to provide maximum

likelihood (%/ILE) estimates of recombination frequencies for all

intervals and for both sexes




