3.2 Linkage Designs and Information
3.3.1 Phase unknown backcross

In human pedigrees, we often cannaot
classify individuals as recombinant and
nan-recombinant.

One possibility is a phase-unknown
backcross.

As befare, one arem |5 A1A2 B162 and
the other is AZAZ 5282 hut now the first
parent may be A1E11A2E2 ZVEE 1 haplo-
types), or A1B2/A2B1 (type 2 haplotypes)
Suppose we have n such families, and in
each typejust twn offsp ring. Each gets
AZB2 from the mother, so, as befare, we
know what each got from the father

If both offs rmg et the same “type" of
haplatype ype or type 2), theh either
bath are recombinant, urneltherls sothis
event has probability pJ\E +(1-p

QOrthere is one of each: then one offspring
rmust be a recombinant and the other nat.
This event has probability p*=2p (1 - p).

N Aadta, Belty

Phase unknown backcross: analysis

Instead of a T ~ B{n, p) recombinants, wie hawve a ¥ ~ B(n, p*)
families

ForO=p= 1/2 p*isa 1-1 monotone increasing function of p, and
when p = 172, p=2x (12} x ({1/2) = 112

Sotesting HO: p = 1/2 against H1: p < 1/2, I5 equivalent to testing
HO* p* =1/2 against H1* p* < 1/2

Thus the testis as before_ reject p* = 1/2 and infer linkage if W = w0,
where the critical value w0 is determined by the desired size {type 1
error) of the test

The critical values are exactly as for the phase-known case, with p™
replacing p, and n now denoting the number of two-child families

Of course, the tests properties are different. When p=0.3, for
example, p*=2x03x0.7= 042, which is closer to 1/2 [t will be
correspondingly harder to detect linkage

Ve return to this in section 3.4

3.3.2INTERCROSS EXPERIMENT

+ Another classic design for experimental organisms is the infercross

+ Two phase-known parents, each of type A1B1/A2E2 are mated
There are nine types of offspring, but these fall into four groups

+ Each type within a group has the same probahility, as a function of

p,and hence the total count of offspring in each group contains all
the available information for linkage

+ These total counts are the sufficient statistics for p

Type |genotypes number |each prob.
| ATA1B2BZ AZAZ B1B1 2 2
Il ATAZB1BZ 1 (p"2 + (1-pyr2)2
1] ATA1B1B2 etc 4 p1-py2
% ATA1B1B1, AZAZ B2BZ 2 (1-p2/4

3.3.3 INTERCROSS EXPERIMENT
Analysis: the type probabilities

Group Il includes both double-heterozygote two-locus genotypes
A1B1/A2B2 and A1B2/A2B1

Group Il includes the four types heterozygous at one of the two loci
ATA1B1BZ; A1A2,B1B1, A2ZA2B1B2 and A1A2 B2BZ.

The following table gives the type probabilities under alternative
hypotheses

Types H2:general H1: total prob HO:p=1/2
| gl pr2i2 0.125

[ q2 (p"2+(1-p)2y2 035

i 93 2p(1-pl 05

I o} (1-p*r212 0.125

INTERCROSS EXPERIMENT
Analysis: testing fit.

+ Consider a sample of size n, with njinclassj, j=1.2.34
+ The log-likelihood for these multinomial data is,
AMq) =const + sum_{j=1}"4 nj log qjip)
+ The probabilities of each phenotype group are shown, under the

eneral multinomial model H2, the general intercross linkage model
1. and in the absence of linkage HO

+ Forexample, suppose n (1,72,42,85)

+ Under H2 genera\q +g2+q3+gd = 1 MLE gf* = njin, or
gq* = ({0.00570386,0. 4% J.odim{H2} =3

+ Under H1 % nera\ 0, forthese data we find, by evaluating the log-
likelihood, that p* =012 giving
qtp) = (0007, 0394 0271, 0:387). dim(H1) = 1

+ The nul\ hypothesis is of no Imkage, HO:p =172

« gqT{1/2)=(0.125,0.25 05,0.125) and dim{HO) = 0.

+ Estimated cell probabilities under H1 and H2 are in good
agresment, but quite different from those under HO

Intercross experiment: testing hypotheses

Computing the maximized log-likeihoods for Hi, i=0,1,2, we find that they
are-J07.78, -217.87, and -217.14 respectively

For testing null HO against H1, the (base e) lod score is 838, Twice this
value (179.8) has approximately a ¥"2_1 if HO is true.  So HO is rejected
For testing null H1 agamst alternative H2, the lod score is 073, and twice
this value {1 46) is ¥*2_2 if H1 is true. So H1 is not rejected

As with the phase-known hackeross, this all extends to the estimation and
testing of two recombination frequencies p_m in males, and p_fin fernales
Although for the intercross experiment, each offspring gives us a male and
a female meiosis, we generally will not know which one is recombinant
The probabilities of the Table of 3.3.3 now depend on p_m and p_f.

For example the firstis {(p_m p_f)f2

A likelihood ratio test may be derived in a similar way to Example 3 of the
phase known backcross [3.2.4), to test equality of male and female
recombination frequencies

Howiever the MLEs of p_m and p_f are now harder to find




3.4 POWER and INFORMATION
3.4.1 POWER and SAMPLE SIZE

If pis the true value, the probability a null hypothesis H_0 is rejected is the

power function of the test.

For example, usm%the Marmal approximation for a phase-known backcross

(or any example where we cnu:‘}t recmmbmants& the D\}N ris
F'(T<tD;p (DT np -ﬁ Sj (np(l-p))

-P

But now (from 3 2 3) nt’Z) (\fnf?)@" -1Ho) , s0

PIT < tE p) e PPN 1}E a) + n (1-2 P))}(Q}\‘(P (1-p))
Maote when p =1/2 this is equal to o, the test type-1 errar
ltdecreases over D= p= 142, Clear\y for a given sample size, linkage is
more easily detected when p is smalll i.e. the power is larger.
Conversely, for given p, one may determine the sample size n required for
given power,

For the phase-unknown hackcross. the power and sample-size
computations are exactly as for the phase-known case, with p™=2p (1-p )
replacing p, and n now denating the number of two- chilt families

3.4.2 Kullback-Leibler information

The Kullback-Leibler (KL} information is a log-likelihood based measure
appropriate for testing hypotheses (as opposed to Fisher Information which
concerns estimation.

For multinomial data in general, we can find the farm of the KL infarmation
Suppose there are c categaries and suppose 7—,'5 the true value of the cell
probabilities gi, i=1,... c, and g0 is some hypothesized value

Thenilq) = sum_{i=1}"c rU log g_j. where here wie Use base-e logs

So for a sample swze n, K_n 7 = BExp_qq( Alg)—Aq0) )

= nsum_{=1}cqi( \ng qi— Dg?q =n sum_{l 1}"c i mg (gifg0)
Fura single ohservation, K =K_1 qD q) = sum_{i=1}c i log (qi / qi)

In the case of linkage analysis data, qi = gi(p) and the null hypothesis is

HO: p = 1/2: gli= q%(WQ)

Evaluating the KL information for testing p=1/2, far the binomial (c=2)
hase-knowin and ( 2-offspring) phase-un nown backeross experiments, and
or the intercross experiment (c=4) we obtain the values for the infarmation

per offspring sampled shawn on the next page

KL Information in linkage designs

True p 0.0 0.1 02 03 04 05
Backcross: 089 0.368 |0.193 0.082 0021 0
phase known

Backecross: 0.35 0111 |0.033 0.008 00004 |0

phase unknown

Intercross 104 0478 |0.226 0.088 0.021 0

This measures information, per offspring sampled, for detecting linkage
when pis the true value. As expected, the mare p differs from 1/2 the more
information there is

Also each phase-known offspring contributes at least twice as much as in
the phase-unknown case. When p is close to 1/2, the phase-unknown two-
offspring design provides very little information

As expected, each intercross offspring contains mare information than a
hackcross offspring. But there is not fwice as much infarmation, as there
would be if the meioses were fully ohservahle.

As p — 1/2, there is almost no additional infarmation in doing an intercross
design rather than a backcross

3.4.3 Elods and sample size

The Kullback-Leibler information for testing p = 1/2 is the expected
base-e lod score at the true value of the recombination frequency p
This, butbase-10, is @ measure very widely usedin linkage analysis
and known as the Elod.

MNote we expect the base-e lod score to be adjproxmate\y nk when
nis large. Forourintercross data with n=200, we had p*= 012 in
fact, the data were simulated at p = 0.1, Then 200x 0 479 is about
95, in good agreement with the (base-e) lod score value of 90 which
wie obtained (last page of 333

This also tells us thatif we had realized that p might be around 0.1,
it was very wasteful to breed 200 mice. Whenp=0.1, about 20
mice are expected to give a lod score (base e} of more than 9; this is
plenty to detect that p # 1/2

Mote again that we have used natural logarithms in these examples,
contrary to standard practice in genetics




