1.3.1 A SAMPLE OF GENES

- · Consider a single genetic locus, with two codominant alleles A and B.
- Suppose each independent gene has allelic type A with probability q. We say q is the (population) allele frequency of allele A.
- For a random sample of n genes from the population, the number of A alleles is $T \sim Bin(n,q)$.
- That is Pr(T=t) is proportional to q^t (1-q)^{n-t}.
- The obvious estimator of q is T/n.
- This estimator is unbiased since E(T/n) = nq/n = q.
- Its variance is q(1-q)/n which in fact is the smallest possible variance for any unbiased estimator.

1.3.2 Likelihood estimation of q

- The log-likelihood is $\lambda(q)=t \log (q) + (n-t) \log (1-q)$.
- So differentiating the log-likelihood
- $\lambda'(q) = (t/q) (n-t)/(1-q) = n/(q(1-q))((t/n) q)$
- So the maximum likelihood estimator (MLE) is t/n.
- Differentiating again, we find the second derivative:

- This is the Fisher information, and the (large-sample) variance of the MLE is $-1/E(\lambda''(q))$. Here, q(1-q)/n is the variance for any sample size.
- For large n, MLEs are approx unbiased, and have approx the smallest possible variance.

1.3.3 A SAMPLE OF INDIVIDUALS

- · Suppose we sample n individuals, and that n1 have genotype AA, n2 have genotype AB and n3 have genotype BB. n1+n2+n3 =n.
- Then we have (2n1 +n2) genes of allelic type A, in a sample of 2n genes.
- We can estimate q by (2n1 +n2)/2n, but properties of the estimator depend on the model for genotype frequencies:
- The log-likelihood is $n1 \log(P(AA)) + n2 \log(P(AB)) + n3 \log(P(BB))$.

1.3.4 Four examples

- (i) The two genes in an individual must be of the same allelic type (n2=0): complete dependence. The estimator is n1/n and in effect we have a sample of n genes.
- (ii) Hardy-Weinberg equilibrium (HWE); independence of the allelic types of the two genes within an individual. So P(AA) = q^2, P(AB)= 2q(1-q) and P(BB) = (1-q)^2.
- . (iii) A mixture of (i) and (ii): see 2.2.4
- (iv) A mixture of súbpopulations in HWE: see 1.3.5.

1.3.5 POPULATION STRUCTURE

- Suppose populations i proportions αi , each in HWE, with qij the freq of allele Aj in population i.
- The overall allele frequencies are weighted average of subpopulation allele frequencies.
- The overall genotype freqs are weighted average of subpopulation HWE frequencies.
- We can show that overall there is excess of each homozygote relative to overall HWE. This excess is known as the Wahlund variance.
- We can show that in total there are fewer heterozygotes than under HWE.
- · Details of equations are on the next page.

Genotype frequencies under population structure:

First $\Pr(A_j) = q_{ij} = \stackrel{\bullet}{\Sigma}_i \alpha_i q_{ij}^*$, and so

 $\Pr(A_1A_2) - (\Pr(A_1))^2 = \sum \alpha_1 q_1^2 - q_1^2$

 $= \sum_i \alpha_i (q_{ij} - q_{ij})^2 \ge 0$

 $\Pr[A_i A_i) = 2 \Pr[A_j | \Pr(A_i)] \ = \ \sum_{i=1}^{t} \alpha_i q_{ij} q_{il} = q_{ij} q_{ij} \}$

 $=2\sum_{i}a_{i}(q_{i}-q_{j})(q_{i}-q_{i})$

For two alleles, let $q_0=q_0,\,q_0=1-q_0,\,q_0=q$. If $\sigma_1^2=S_0\alpha_0(q_0-q)^2$, then the three genotype freqs are $q^2+\sigma_2^2,\,2q(1-q)=2\sigma_2^2$ and $(1-q)^2+\sigma_3^2.$

1.4.1 ESTIMATION: case of HWE

- Log-likelihood is $\lambda(q) = \log L(q)$ = n1 log(q^2) + n2 log(2q(1-q)) + n3log((1-q)^2) = (2 n1 + n2) log (q) + (n2 + 2n3) log(1-q)
- The MLE of q is (2 n1 + n2)/2n.
- If T = 2 n1+n2, T~ Bin(2n,q). --- back to binomial sampling, with a sample size 2n genes.
- Hence, var(T/2n) = q(1-q)/2n.
- Note: One generation of random mating establishes HWE, since, by definition, the two genes in an individual are copies of independently sampled parental genes.

1.4.2 Case of a recessive allele

- t = n1 of type AA, and n-t not of type AA.
- Assuming HWVE, P(AA) = q^2, so log-likelihood is λ(q) = t log(q^2) + (n-t) log (1-q^2)
- Differentiating $\lambda'(q) = 2t/q 2(n-t) q/(1-q^2)^2$ = $(2/q(1-q^2)) (t-n q^2)$
- So the MLE of q is √(t/n).
- · Why should this be expected?
- Now T ~ Bin(n, q^2), but how can we find the variance of this MLE?

1.4.2 ctd: Using Fisher Information

- λ"(q) = -2t/q^2 2(n-t)/(1-q^2) -4 (n-t) q^2/(1-q^2)^2
- $E(-\lambda''(q)) = 2n + 2n + 4 q^2 n/(1-q^2)$ = $4n/(1-q^2)$
- Thus, the variance of the MLE of q is approx. (1-q^2)/4n.
- · Note this is larger than q(1-q)/2n.
- Note (i) We have to make assumptions (HWE),
 (ii) the variance of the estimator is larger.
 (iii) Using the Fisher information we can measure the information lost.

1.4.3 Data on relatives

- · We consider just mother-baby pairs and assume HWE.
- · See next page for the conditional and joint probabilities.
- I(q) = n00 log(q^3) + n01 log(q^2 (1-q)) + n10 log (q^2 (1-q)) + n11 log(q(1-q)) + n12 log (q(1-q)^2) + n21 log (q(1-q)^2) + n22 log ((1-q)^3) = (3 n00 + 2 (n01 + n10) + n11 + n12 + n21)log q + (3 n22 + 2 (n21+n12) + n11 + n10 + n01) log (1-q) = mA log q + mB log (1-q).
- The MLE of q is mA/(mA +mB), where (mA +mB) = 3n - n11 and mA = (3 n00 + 2 (n01 +n10) + n11 + n12 + n21).

Parent and child probabilities

par	prob	ch AA	ch AB	ch BB			
AA	q ^ 2	q	(1-q)	0			
AB	2q(1-q)	q/2	1/2	(1-q)/2	T		
ВВ	(1-q)^2	0	q	(1-q)			
	ch AA	ch AB	ch BB	Data counts			
AA	q ^ 3	q^2(1-q)	0	n00	nC)1	0
AB	q^2(1-q)	q(1-q)	q(1-q)^2	n10	n1	1	n12
ВВ	0	q(1-q)^2	(1-q)^3	0	n2	21	n22

1.4.4 Alternatives to the MLE

- The MLE is ``best", but there are simpler estimators that are not bad.
- One is to use only founders (here the moms): estimate q by (2 nAA + nAB)/2n where nAA and nAB are the numbers of AA and AB moms., (nAA = n00+n01).
- Or, use everyone, disregarding relationship: estimate q by (2 mAA + mAB)/4n, where mAA and mAB are is total numbers of AA and AB individuals. (mAA = 2 n00 + n01 + n10).
- These are both unbiased estimators, but asymptotically the MLE has smaller variance.