1.3.1 A SAMPLE OF GENES

= Consider a single genetic locus, with two codominant
alleles A and B.

* Suppose each independent gene has allelic type A with
probability g. We say q is the (population) allele
frequency of allele A.

= For a random sample of n genes from the population, the
number of A alleles is T ~ Bin(n,q).

* That is Pr{T=t) is proportional to g*t (1-g)*{n-t}.

* The obvious estimator of q is T/n.

. This estimator is unbiased since E(T/n) =ng/n = q.

. Its variance is g{1-q)/n which in fact is the smallest
possible variance for any unbiased estimator.

1.3.2 Likelihood estimation of q

+ The log-likelihood is A{g)= t log{g) + (n-t) log{1-q).
+ So differentiating the log-likelihood

Ng) =t - (n-0(1-q) = nf(q(1-o)( ) —q)
So the maximum likelihood estimator (MLE) is t/n.
Differentiating again, we find the second derivative:
A(q) =- (tg*2) - (n-t(1-g)*2 and

- E((a)) = nig + nf(1-q) = nf(q(1-a))

This is the Fisher information, and the (large-sample}
variance of the MLE is -1/E(A"(q)).
Here, q{1-q)/n is the variance for any sample size.

For Iarge n, MLEs are approx unbiased, and have
approx the ‘smallest possible variance.

1.3.3 A SAMPLE OF INDIVIDUALS

* Suppose we sample n individuals, and that n1
have genotype AA, n2 have genotype AB and n3
have genotype BB. n1+n2+n3 =n.

* Then we have (2n1 +n2) genes of allelic type A,
ina sample of 2n genes.

* We can estimate ¢ by (2n1 +n2)/2n, but
properties of the estimator depend on the model
for genotype frequencies:

* The log-likelihood is
n1 log(P(AA)) + nZ log(P(AB)) + n3 log{P{BB)).

1.3.4 Four examples

(i) The two genes in an individual must be of the

same allelic type (n2=0). complete dependence.

The estimator is n1/n and in effect we have a

sample of n genes.

(i) Hardy-Weinberg equilibrium {HWE);

independence of the allelic t gpes of the two
enes within an individual. =qhz,
(AB)= 2g{1-q) and P(BB) = (1-q "2

« (i) A mixture of (i) and (ii}: see 224,

. (1“% g\ mixture of subpopulations in HWE: see

1.3.5 POPULATION STRUCTURE

» Suppose populations i proportions ai, each in HWE, with
gij the freq of allele Aj in population i.

* The overall allele frequencies are weighted average of

subpopulation allele frequencies.

The overall genotype fregs are weighted average of

subpopulation HWE frequencies.

» We can show that overall there is excess of each
homozygote relative to overall HWE. This excess is
known as the Wahlund variance.

* We can show that in total there are fewer heterozygotes

than under HWE.

Details of equations are on the next page.
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1.4.1 ESTIMATION: case of HWE

. Log—llkellhood is Alg) =log L )
=n1 log{g*2) + n2 Iog 3log$1 q)*2)
=(2nT+ n2 ) log (g ?nz + 2 3) log(1-a)
*» The MLE of qis (2 n1 + n2)/2n.
s fT=2n1+n2, T~ Bln(2n q). — back to

binomial sampling, with a sample size 2n genes.

* Hence, var(T/2n) = q(1-q)/2n.

* Note: One generation of random matin
establishes HWE, since, by definition, the two
genesinan individual are copies of
independently sampled parental genes.

1.4.2 Case of a recessive allele

t=n1 of type AA, and n-t not of type AA.

Assuming HWE, P(AA) = g2, so log-likelihood

is  Alg) =t log( g"2) +(n-1) log (1-9*2)

Differentiating A’(q) = 2t/q - 2 (n-t) gf{1-g"2)*2
= (2/q(1-9"2)) (t—n g°2)

So the MLE of qis v(/n).

Why should this be expected?

Now T ~ Bin(n, g*2), but how can we find the
variance of this MLE?

1.4.2 ctd: Using Fisher Information

LY (q)—-2th“2 2(n-1)/1-q
. g yah2 i 1 q“2 2.
« E(-A'{q)) = 2n +2n +4 q"2 nf{1-g*2)
= 4nf(1-g*2)
. 2’1hus the variance of the MLE of qis approx.
g2
* Note this is larger than g(1-g)/2n.
* Note (i) We have to make assumptions (HWE),
Ii) the variance of the estimator is larger.

. i) Using the Fisher information we can
measure the information lost.

1.4.3 Data on relatives

We consider just mother-baby pairs and assume HWE.
See next page for the conditional and joint probabilities.
I{g) = n0O log{g"3) + n01 log(g"2 {1-g)) +

n10 leg (g2 (1-q)) +n11 log(g(1-q)) + n12 log (q(1-g)*2)
+ n21 log {q({1-q*2) + n22 log ({1-q)*3)

= (3n00 + 2 (n01 +n10) +n11 +n12 + n21 jlogq +
(3n22 +2(n21+n12) + n11 + n10 + n01) log (1-q)

= mA logg+mB log{1-q).

The MLE of g is mA/(mA +mB),

where (mA+mB)=3n-n11 and

mA =(3 n00 + 2 (n01 +n10) + n11 + n12 + n21).

Parent and child probabilities

par prob chAA  [chAB (ch BB
AA q'2 q (1-q» 0
AB 2q(1-q) | o2 142 (1-q)2
BB (-g*2 | 0 q (1-q)

chAA |chAB |chBB Data counts
AA q*3 g*2(1-q) | O n00 (nO1 0
AB g*2(1-q) |[q(1-q) |q{1-g¥*2 | n10 [ni1 ni2
BB 0 q(1-g)*2 [(1-9)*3 0 |n21 n22

1.4.4 Alternatives to the MLE

The MLE is “"best", but there are simpler
estimators that are not bad.

One is to use only founders (here the moms):
estimate g by (2 nAA + nAB)/2n where nAA and
nAB are the numbers of AA and AB moms.,
(nAA = n00+n01).

Or, use everyone, dlsregardlng relationship:
estimate q by (2 mAA + mAB)/4n, where mAA
and mAB are is total numbers of AA and AB
individuals.  (mAA =2 n00 +n01 +n10).

These are both unbiased estimators, but
asymptotically the MLE has smaller variance.




