What we need to know about likelihood — a summary

1. Maximum Likelihood Estimation
1.1 What is estimation

Statistical model: Data random variable X, whose value x is observed, has one of a family of
probability distributions {Py; 0 € ©}, indexed by a parameter # in parameter space O.

Goals of estimation:
(i) make inferences about which Py gave rise to the observed x.
(ii) Assess the uncertainty associated with this inference.

A statistic is a function of the data random variables X.
An estimator 7' = T'(X) is a statistic taking values in ©.
The estimate is T'(x), the value taken by the estimator, which is used to estimate 6.

The likelihood is Lx(f) = Py(x), a function of . The likelihood provides the connection between
the data x and the probability model Fj.

Example: Suppose X;, i = 1,...,nii.d. B(1,6), the indicators of success in n independent trials,
each with success probability 6.. So Py(z) = 67(1 — 0)1=7, for each trial.
So L,(0) = T17(6% (1 — 6)} %) and

1a(0) = (3" wi) log(6) + (n— > ;) log(1 — 6)
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Note that the (log)-likelihood depends only on ¢ = >"7 x;, the total number of successes.
1.2 Maximum likelihood estimation.

The MLE maximises the likelihood as a function of @, to give the value of 8 that “best explains”
the data x. To obtain the estimator, maximise Py(X), or log Py(X) w.r.t. 6.

Example: If T is B(n,0)

L(0) = Py(T =t) = ( y )9%1 — gt
[(0) = const + tlog(0) + (n —t) log(1 — 0)

maximising this w.r.t. 0 we get 6 = t/n.
1.3 Desirable properties of estimators
1.3.1 Lack of bias:

T'(X) is unbiased if, for any 6 € ©, X ~ Py = E(T(X)) = 6.
(We write this as Eg(7'(X)) = 6, the subscript indicating the "true” f-value.)
That is, an unbiased estimator is ”right, on average”, over repetitions of the experiment.

The bias of estimator T'(X) is br(0) = Eo(T(X)) — 6.

Example: if T is B(n,0), then Eg(T) = n#, so the MLE is unbiased. Unbiasedness alone is a
very weak criterion. Some unbiased estimators may be very bad, and many “good” estimators are
biased. In particular many MLE’s are biased.



1.3.2 Small mean square error

The mean square error of estimator T(X) is MSEy(T) = Ep((T(X) — 6)?).
If T(X) is unbiased, MSEg(T") = varg(7T).

In general, MSEy(T) = varg(T) + (br(6))%

Example: For the estimator 7'/n of the binomial parameter 6,

var(T/n) = var(T) /n* = nf(1 — 0)/n* = 0(1 — ) /n

1.3.3 Consistency:

Consider an n-sample X(™ = (X1, ..., X,,), X; i.i.d. and a sequence of estimators T}, = T(X ™).
Then the sequence of estimators (7),) is consistent for 6 if, for every § € O, and every € > 0,
Py(|T, — 0] >€) — 0 as n — oo.
That is, for every 0, if X ~ Py, T,,~2-0.
In the Binomial example, above, T'(X) = %Z? X, is unbiased for 6, has
MSEg(T') = varg(T) = 0(1 —0)/n — 0 as n — o0
and hence is consistent.
1.4 Properties of maximum likelihood estimators
1.4.1 Basic properties of MLE

(i) If @ = 6 maximises Ly () then § = 6 maximises lx(6) = log Lx(6) since log is an increasing
function. The equation %’; = 0 is known as the likelihood equation. It is usually the easiest way
to find the MLE if () is differentiable w.r.t. 0.
(ii) Let (@) be a 1-1 differentiable function of € then
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So the two likelihood equations (w.r.t. § and w.r.t. ) have the same roots, and the same sign of
the second deriative at any local stationary point of Ix. That is, @ = «(0).

(iii) MLE’s can often be biased, but under very broad conditions they are asympotatically unbiased.
1.4.2 Asymptotic properties

(i) There is a neat result which we won’t prove here, which says that if we consider Eg, (log(Py(X)))
this is maximized w.r.t 8 by 0 = 6y. Informally, this says the expected log-likelihood is maximized
at the true value of the parameter. The difference

Egy (log(Fp,(X))) — Eg,(log(Fy(X)))
is known as the Kullback-Leibler information.

(ii) One of the fairly immediate consequences of (i) is that under very broad conditions MLEs are
consistent.

(iii) There is another neat result, which we also won’t prove here, which says that (subject to a few
conditions) no unbiased estimator can have a variance smaller than

5?2 -
[Eeo (aT log<Peo<x>>>]
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This quantity is known as the Fisher information. The larger the information, the smaller the
variance can be.

(iv) Another result says that, subject to a few more conditions, MLE’s are asymptotically
approximately Normal, with mean 6y, the true parameter value, and variance the inverse of the
Fisher Information. This says that, in large samples, MLEs, are the best estimators.

(v) All these conditions etc. are satisfied in all the binomial and other examples we shall talk about.

(vi) Of course, we don’t know 6y, but at least for large samples, we know the MLE 0 is close to the
true value 6, so we compute the Fisher information, and plug in #(X) for 6y to get an estimate of
the variance of the MLE.

(vii) Sometimes the expectation in the Fisher Information can be hard to compute. Then, at least
for large samples, we just compute

5 —1
[—% o8Py (X))]

and evaluate it by plugging in the observed x for X and é(x) for 6.
There is lots of theory that says all this is ok.

Example:

T is B(n,0). As before
1(0) = const + tlog(f) + (n — t)log(1 — )

and we know the MLE is T'/n which has expectation 6 and variance (1 — 0)/n.

Now,

mogy .t (n—1)

Fo) = 62 (1-0)2
so the Fisher information comes out as n/0(1 —§). Thus in this example, the MLE has the smallest
possible variance.

In practice, we estimate the variance as

~ A~

6(1—0)/n = t(n—1t)/n®

We can note that in fact we get the same result if we plug in ¢/n for € in I”(6), without going
through the expectation step. That is not true in general, but it is for this particular example.



2. Testing multinomial probabilities

2.1 Generalized likelihood ratio tests

(i) Just as the maximum likelihood estimate is the value of the parameter that best explains the
observed data, the maximized value of the likelihood is a measure of how well this value is supported
by the data, relative to how well other values are supported by the observation of these data.

Accordingly we define

L(©o) = max(L(0))

as a measure of support for the hypothesis 8 € O, and
A(@l : @0) = L(@l)/L(Go)

as a measure of the relative support for the two hypotheses 8 € ©1 and 6 € Q.

(ii) In the case when ©g C ©1, A > 1, 2log. A > 0, and asymptotically, if § € O is true, then
2log, A is approximately distributed as a x? random variable, with degrees of freedom equal to
dim(©1) — dim(©1). If # € Oq is not true, then 2log, A — oo at a rate which depends on the
Kullback-Leibler information.

There are, of course, various regularity conditions in order that these results hold, but these are
essentially the same as the ones needed for the asymptotic results about MLEs. They hold for all
the sorts of examples we shall talk about.

2.2 Multinomial likelihoods

(i) Suppose there are k possible outcomes, having probabilities p;,7 = 1,...,m, and a vector of
parameters 60, so p; is p;(#). The log-likelihood is

m
¢ = const + an log p;
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since Y i, p; = 1. This is sometimes known as Fisher’s formula, since he was one of the first people
to write it down in this way.



(ii) Example: m = 2, p1(0) = 0%, po =1 — 6.

op Op2
L o2 )
50 0 and 50 0
0?0 1. 5 1 )
_ dn
(1-06%)
(iii) Case of the general model, > /" p; = 1 with no other constraints.
m m—1 m—1
= > milogp; = > milogp + nmlog(l— > p;)
i=1 i=1 i=1
0 _ mi _ Im
Op; Pi  Pm

fori=1,...,m — 1, giving the MLE p; = n;/n, and the maximized value of the log-likelihood is

m m
i = Znilogﬁi = Znilogni — nlogn
i=1 i=1

3. Gene counting and the EM algorithm

(i) We have seen that where genotypes are observable, estimating allele frequencies is just a matter
of counting the genes. In a slightly more general sense, the same is true when we cannot observe
the genotypes fully. The formal derivation of this is the theory of the EM algorithm, which dates
to 1977, but gene-counting was well established for estimating ABO allele frequencies for example,
at least 20 years earlier.

(ii) The general set-up is as follows. Let Y be the actual data random variables, while X are
additional related random variables which are not observed, so the likelihood is

L) = fy(y;0) = fo,y(x,y;Q)dX

The complete-data log-likelihood, which is what the log-likelihood would be if we could observe X
in addition to Y, is £*(X,Y;0) = log fx v(x,y;0).

The EM algorithm is as follows:
At current parameter values 6
E-step: compute £**(0g;0) = Eq,(¢*(X,Y;0) | Y =y)
M-step: maximize ¢**(6y; ) w.r.t 6, say at 0 = 0,
Result: L(01) > L(6y).

(iii) Multinomial case

Since ¢ = Y n;logp;, determining £** is just a question of computing the expected value of the
complete-data count n; given the counts actually observed (E-step). Given these complete-data
counts, the maximization step (M-step) counts the proportions. Two examples will make this
clearer!



(iv) Case of the recessive allele.

In fact, we don’t need the EM algorithm here, since we can find the MLE directly, but it’s good
to see it works. Suppose in a sample size 100 there are ny = 36 of the recessive type AA. The
three genotypes are AA, AB and BB, but we do not see the counts of AB and BB since B is
dominant to A. If we did see these counts, no and n3, we would estimate p, the frequency of A by
(2n1 + ng)/2n. Further,

P(AB | AB or BB) = 2293’%& = Q so Ey(ny | ny+ng = 64) = 64Q

current current AA AB BB new
p Q=2pq/(2pg+q?) | 1 =36 mno+ng=64|p=(2n1 +n2)/2n

0.5 0.667 36 42.67 21.33 0.573
So now  0.573 0.729 36 46.64 17.36 0.593
0.593 0.745 36 47.66 16.34 0.598
0.598 0.749 36 47.91 16.09 0.600
0.600 0.750 36 48.00 16.00 0.600

(v) Case of ABO blood types

The case of ABO blood types is directly analogous, but here we must partition both the A phenotype
into AA and AO, and the B phenotype into BB and BO. Once the counts are partitioned,
according to current estimates of allele frequencies, the new estimate of the A allele frequency p is
Qaa+ (Qao+Qap)/2, and the new estimate of the B allele frequency ¢ is Qpp+ (Qpo+QAan)/2.
Here the EM algorithm is in fact one of the easiest ways to get the MLE. Recall, Bernstein sampled
502 individuals, and reported frequencies of the four types 0.422, 0.206, 0.078, and 0.294.

current values AA AO BB BO AB 010 new values
poa 5% G| Qa=0422 Q=026 Qi Qoo | p ¢

=Qaa+Quo =Qpp+Q@po =0.078 =0.294

0.3 0.3 073 0.73|0.115 0.307 0.056 0.150 0.078 0.294 | 0.308 0.170
0.308 0.170 0.77 0.86 | 0.096 0.326 0.029 0.177 0.078 0.294 | 0.298 0.156
0.298 0.156 0.79 0.87 | 0.091 0.331 0.026 0.180 0.078 0.294 | 0.295 0.155
0.295 0.155 0.79 0.88 | 0.089 0.333 0.025 0.181 0.078 0.294 | 0.295 0.155

Over the iterations, the log-likelihoods is —687.1242, —628.9991, —627.5693, —627.5262, —627.5246.



