Extra from Homework 3, Q1:

	A-locus			
B-locus	A_1A_1	A_1B_1	$B_{1}B_{1}$	† †
A_2A_2	143	17	2	а
$A_{2}B_{2}$	35	(5)	0	a h
$B_{2}B_{2}$	3	0	0	

If there are any B_1B_2 they will most likely show as double-heterozygotes, as A_1A_2 is the common haplotype.

 $\begin{aligned} &\#(A_1A_2) = 2^*143 + 35 + 17 + 5x = 338 + 5x; q_1 = (338 + 5x)/410 \\ &\#(A_1B_2) = 35 + 2^*3 + 5(1-x) = 41 + 5(1-x); q_2 = (46 - 5x)/410 \\ &\#(B_1A_2) = 17 + 2^*2 + 5(1-x) = 21 + 5(1-x); q_3 = (26 - 5x)/410 \\ &\#(B_1B_2) = 5x \end{aligned}$

If x = 0, $2q_2q_3 = 0.014$ and expected double-hetzs is 2.9.

The fact that we see 5 is some (slight) evidence that there is maybe at least one B_1B_2 haplotype in the sample: EM estimates q_4 as about 0.005, so expected $\#(B_1B_2)$ is $410q_4 \approx 2$.