Extra from Homework 3, Q1:

	A-locus		
B-locus	$A_{1} A_{1}$	$A_{1} B_{1}$	$B_{1} B_{1}$
$A_{2} A_{2}$	143	17	2
$A_{2} B_{2}$	35	(5)	0
$B_{2} B_{2}$	3	0	0

If there are any $B_{1} B_{2}$ they will most likely show as double-heterozygotes, as $A_{1} A_{2}$ is the common haplotype.
$\#\left(A_{1} A_{2}\right)=2^{*} 143+35+17+5 \mathrm{x}=338+5 \mathrm{x} ; q_{1}=(338+5 x) / 410$
$\#\left(A_{1} B_{2}\right)=35+2^{*} 3+5(1-x)=41+5(1-x) ; q_{2}=(46-5 x) / 410$
$\#\left(B_{1} A_{2}\right)=17+2^{*} 2+5(1-x)=21+5(1-x) ; q_{3}=(26-5 x) / 410$
$\#\left(B_{1} B_{2}\right)=5 \mathrm{x}$
If $x=0,2 q_{2} q_{3}=0.014$ and expected double-hetzs is 2.9.
The fact that we see 5 is some (slight) evidence that there is maybe at least one $B_{1} B_{2}$ haplotype in the sample:
EM estimates q_{4} as about 0.005 , so expected $\#\left(B_{1} B_{2}\right)$ is $410 q_{4} \approx 2$.

