Chapter 2: Genes in Pedigrees

2.1 Pedigree definitions and terminology

2-1
2.2 Gene identity by descent (ibd) 2-5
2.3 ibd of more than 2 genes 2-14
2.4 Data on relatives

2-21

2.1.1 GRAPHICAL REPRESENTATION OF PEDIGREES:

- Three graphical representations.

The parent-offspring links.
—often animal pedigrees.
-too many crossing lines.
The sibship representation.
—often human pedigrees
-"tramlines" (J.H.Edwards)
The marriage-node graph. see figure (Cannings et al., 1978) - Founders and non-founders (no half-founders): assumed unrelated.

- Gender: male, female, and unknown. (square, circle, diamond) - Shading or labelling of individuals

2.1.2 SPECIFICATION OF PEDIGREES:

- Unique individual identifiers ("names")
- Parent-offspring trios. (default: ind, dad, mom)
- Specification of founders.
(parent "names" =0)
- Gender: male, female, and unknown. (1, 2, 0) or (M, F, U)
- Phenotypic, covariate, and marker data.
- "Chronological" (partial) ordering of pedigrees.

name	dad	mom	sex	other data
101	0	0	1	\square
102	0	0	2	\square
201	101	102	2	\square
204	101	102	1	\square
206	101	102	1	\square
fred	0	0	1	\square
203	0	0	2	
joe	fred	201	1	-
jane	204	203	2	
dave	204	203	1	
hugh	joe	jane	1	
etc				

2.1.3 TYPES OF RELATIONSHIP:

- Related : individuals having a common ancestor (implies a biological relationship)
- Inbred: individuals whose parents are related (implies the maternal and paternal genes can descend from single ancestral gene).
- Unilateral (one-sided) and bilateral (two-sided) relationships: unilateral: half-sibs, aunt, niece, cousins bilateral: sibs, double first cousins, etc.
- Cousin-type relationships: Half, full, and double cousins:
$n^{t h}$ cousins k times removed

2.1.4 More complex relationships:

Quadruple half first cousins; and quadruple second cousins

Dr Elizabeth A Thompson
Stat 550: StatGen I: 2014

Chapter 2-5

2.2.1 GENE IDENTITY BY DESCENT ($i b d$):

- RELATIVES ARE SIMILAR because they have ibd genes, that are copies of the same gene in a common ancestor.
NOTE: ibd is defined relative to given pedigree or time point

- Basic assumption:

- ibd genes are of the same allelic type; ignores mutation
- non-ibd genes are of independent types; ignores structure beyond the pedigree.
Recall the basic Mendelian genetics examples of Homework-1.
- Framework for analysis of genetic data on pedigrees:

A pedigree or relationship determines probabilities of ibd, which determine probabilities of joint genotypes which determine probabilities of joint phenotypes that is, similarity among relatives.

2.2.2 KINSHIP and INBREEDING:

- The simplest pedigree-defined probabilities of gene ibd are the coefficients of kinship (ψ) and inbreeding (f), which measure ibd between two genes.

$$
\begin{aligned}
\psi(B, C)= & \operatorname{Pr}(\text { homologous genes segregating } \\
& \text { from } B \text { and } C \text { are ibd }) \\
f(B)= & \operatorname{Pr}(\text { homologous genes in } B \text { are ibd }) \\
= & \psi\left(M_{B}, F_{B}\right)
\end{aligned}
$$

where M_{B} and F_{B} are the parents of B.

- Note at a single locus:
randomly chosen from \equiv segregating from
but for two of more loci we must define what "randomly chosen" should mean, and the relevant definition is that of Mendelian segregation.

2.2.3 KINSHIP EXAMPLES via PATH COUNTING:

Half sibs: $(1 / 2) \times(1 / 2) \times(1 / 2)=1 / 8$
Two genes from an inbred (f) parent:
$1 \times f+(1 / 2) \times(1-f)=(1 / 2)(1+f)$
Half sibs with inbred (f) parent: $(1+f) / 8$
Full sibs: $1 / 8+1 / 8=1 / 4$
First cousins: $(1 / 4) \times(1 / 2) \times(1 / 2)=(1 / 16)$
Double first cousins: $1 / 16+1 / 16=1 / 8$
General formula (Wright, 1922):

$$
\psi=\sum_{A} \sum_{\mathcal{P}(A)} \frac{1}{2}\left(1+f_{A}\right)\left(\frac{1}{2}\right)^{n_{1}(\mathcal{P}(A))+n_{2}(\mathcal{P}(A))}
$$

EXAMPLE: The JV pedigree (Goddard et al., 1996):

2 ancestors, each with 3 paths, each with $n_{1}=n_{2}=3$: and 2 ancestors, each with 1 path, each with $n_{1}=n_{2}=2$.
$2 \times 3 \times\left(\frac{1}{2}\right)^{7}+2 \times 1 \times\left(\frac{1}{2}\right)^{5}=7 / 64$

2.2.4 RECURSIVE METHOD:

$$
\psi(B, C)=\frac{1}{2}\left(\psi\left(M_{B}, C\right)+\psi\left(F_{B}, C\right)\right)
$$

provided B is not C nor an ancestor of C
$\psi(B, B)=\frac{1}{2}\left(1+f_{B}\right)=\frac{1}{2}\left(1+\psi\left(M_{B}, F_{B}\right)\right)$

Boundary conditions:

$$
\psi(A, A)=\frac{1}{2} \text { and } \psi(A, C)=0
$$

if A is a founder, and not an ancestor of C
Expanding up the JV pedigree, among the grandparents, we have 3 first-cousin pairs and a sib pair. The kinship of first cousins is $1 / 16$, and of sibs is $1 / 4$, so overall we have

$$
\frac{1}{4}\left(3 \frac{1}{16}+\frac{1}{4}\right)=\frac{7}{64}
$$

2.2.5 INBREEDING and GENOTYPE FREQUENCIES:

- MYTH: Recessive diseases are more frequent in genetic isolates. This is because isolates are "more inbred"
- TRUTH-1: the more inbred individuals within any population have higher probability of being affected.
- Consider a recessive disease allele a with freq q, and an individual with inbreeding coefficient f ($a a$ individuals are affected.)

$$
\begin{aligned}
\operatorname{Pr}(a a) & =q^{2}(1-f)+q f=q^{2}+f q(1-q) \\
\operatorname{Pr}(A a) & =2 q(1-q)(1-f) \\
\operatorname{Pr}(A A) & =(1-q)^{2}+f q(1-q)
\end{aligned}
$$

See population mixtures and Wahlund variance (see 1.2.4), For two alleles, see homework 2, \# 4: $\sigma_{f}^{2}=\sum_{i} \alpha_{i}\left(q_{i}-\bar{q}\right)^{2}$:

$$
\begin{aligned}
\operatorname{Pr}(a a) & =q^{2}+\sigma_{f}^{2} \text { and } \operatorname{Pr}(A A)=(1-q)^{2}+\sigma_{f}^{2} \\
\operatorname{Pr}(A a) & =2 q(1-q)-2 \sigma_{f}^{2}
\end{aligned}
$$

Population subdivision vs inbreeding:

- In population subdivision, people marry those more similar, hence more homozygosity in offspring.
- In inbreeding, people marry relatives, and hence more similar, and hence ... Inbreeding is a form of population subdivision.

Autozygosity (ibd) vs. inbreeding

- Autozygous \equiv having ibd genes
\bullet inbred \equiv having non-zero prob of being autozygous

$$
\operatorname{Pr}(i b d \mid \text { affected })=\frac{q f}{q^{2}+f q(1-q)}=\frac{f}{q+f(1-q)}
$$

which $\geq f$, increases as q decreases, and $\rightarrow 1$ as $q \rightarrow 0$.
TRUTH-2: In a population with varying levels of inbreeding, the affected people have higher probability of being inbred.

Suppose a proportion α of the population (Pop_{1}) has inbreeding coefficient f and others $\left(\mathrm{Pop}_{2}\right)$ are not inbred:

$$
\begin{aligned}
\operatorname{Pr}(\text { affected } a a) & =(1-\alpha) q^{2}+\alpha\left(q^{2}+f q(1-q)\right) \\
& =q^{2}+\alpha f q(1-q) \\
\operatorname{Pr}\left(\text { Pop }_{1} \mid \text { affected }\right) & =\frac{\alpha\left(q^{2}+f q(1-q)\right)}{q^{2}+\alpha f q(1-q)} \\
& =\frac{\alpha(q+f-f q)}{(q+\alpha f-\alpha f q)}
\end{aligned}
$$

which is always $\geq \alpha$ and $\rightarrow 1$ as $q \rightarrow 0$.
TRUTH-3: The affected inbred people in the population have higher probability of being autozygous (ibd):

$$
\operatorname{Pr}(i b d \mid \text { affected })=\frac{\alpha f q}{q^{2}+\alpha f q(1-q)}=\frac{\alpha f}{q+\alpha f(1-q)}
$$

Same form as before with f now becoming αf.

Blank slide:

