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4.4.1 The backwards Baum algorithm and P:(S, ; | Y):

S’al S.aj_l S.’j S.aj—i_l S'ae
}/.’1 }/’7]_1 K?] K?J—i_l Y;’E
y*(—1) yt(+1)

e Now also define
Ri(s) = Pr(Vi,k=1j,...,£|S8.;=35) =Pr(YT0 | S, ; =)
*Ri(s) = Pr(Yik=3j,...,L|S.; =)

= > Pr(Yik=4j,...,0,S. ;41 =5"|S.; =)

Pr(Yj | S.j=8) Y Rl (s)Pr(S. 41 = s"|S.; = s)

* 1
PI‘(Y,S”' = 5) R(S)R(S)
PN Pi(Sy=s1Y) = —F RN = Thyy
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4.4.2 Expected recombination counts: implementing EM:

e Recall from 4.2.2 we want

X; = B(X;|Y) = > E(Sij41— Sl 1Y)
e Note that i
Pr(S.;,S.;411Y) = Pr(S.;,5.;41,Y)/Pr(Y) and
Pr(S.;,S.j+1,Y) = Pr(Y*U™D S )Pr(Y.; | S. ;)
Pr(S. 11| S. )PVt |5 510)

e The first term is just the R (S. ;) we had in the forwards Baum algo-
rithm, the second is just a single-locus probability of data given inher-
itance, the third is just the recombination/non-recombination transi-
tions in I; interval, and the final is R}L.H(S.,Hl) from the backwards
version of the Baum algorithm.

e On small pedigrees, the EM map estimation can be implemented.
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4.4.3 The joint pattern of S over loci:

e 4.4.1 gives us probabilities of S, ; given Y and hence probabilities
of ibd at each locus j. Each S, ; can take 2™ values.

e 4.4.2 gives us pairwise probabilities of (S.;,S. +1), and hence
expected recombination counts, given Y. Each (S.;, S.+1) can
take 2™ x 2™ = 4™ values.

e But suppose we want S jointly over all the loci; this is infeasible to
compute eactly, even on small pedigrees. S can take 2™ values —
there are too many possible S.
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4.4.4 Monte Carlo realization of S given Y:

Se,1 Sej-1 Sej Sejtl  Seu
Yo1 Yoji—1 Y.; Yej+1 Yoy
y*(—1) yt(+1)

e Compute R!(s) = Pr(Y*W), S, ; =s),j = 1,2,3,...L as before.

e First, S., is sampled from oc Pr(Y, S. ;) = Pr(Y.,|S..) R;(S..).
(All sampling probabilities will be normalized over 2™ s-values.)

e Then, given a realization of (S, j+1 = s*,S. j42,...,5.0),

PF(S.J' == S | S,,j_|_1 - S*, S,,j_|_2, ey S,’g, Y) —

PI’(S.J == S|S,7j_|_1 == 8*, Y*(j>) X PI"(S,’j_Fl = 8*|S.’j == S)

R;(s)Pr(Y.;1S. )

e Normalizing these probabilities, we realize each S, ;_1, for j

¢, ¢ — 1,...,4,3,2 in turn, providing an overall realization S

(S.1,...,85.0) fromPr(S |Y).
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4.4.5 Monte Carlo estimates of /bd and genetic maps:
e Instead of computing Pr(S. ; | Y) we can sample it, and hence get
estimates of /bd patterns at each locus j.

e We can make estimates of ibd jointly over loci — for example, the
probability that an individual is autoygous over a set of loci, not just
the separate probability of each.

e Intead of computing

X; = E(X;1Y) = > E(Sij41— Sisl |Y)
we can count recombination events in N realized S for all map inter-
vals and each gender.

e Hence we can do Monte Carlo EM, replacing the E-step by these
Monte Carlo estimates at each stage.

e Generally, Monte Carlo EM works as well as regular EM, at least
for the initial steps. Initially, the Monte Carlo sample size N need not
be large, although for the final EM steps it should be increased.

Dr Elizabeth A Thompson Stat 550: StatGen I: 2014

Chapter 4 - 19

Photos from Qian:

e Left: Above: Showing forwards (R*) and backwards (R') compo-
nents of the HMM likelihood computation. Below: a map-specific lod
score computed at locations along a chromosome.

e Right: The grid of 2™ components S ; of S, showing the Markov
dependence across loci 7, and the computational complexity of HMM
computations.
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4.5.1 Conditional independence over pedigree members:

e We get our DNA from our parents and copy to our offspring.

All meioses (transmissions of DNA) are independent.

Given the genotypes of parents, sibs are independent, and inde-
pendent of grandparents, uncles, cousins, ....

e Sum over the green family for
each genotype of A

e Sum over the pink family for each
genotype of B

e Using these values, sum over the
blue family for each genotype of C.
e Using these values for each C,
sum over the yellow family.

e First used by Haldane and Smith (1947) (without computers)
Formalized (and programmed) by Elston and Stewart (1971).
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4.5.2 Elston-Stewart algorithm:

e An example pedigree without loops. Shaded individuals are those
for whom phenotypic data are assumed to be available

21 22 12 13

10 11 24

¢ o

e Unlike a chromosome, pedigrees have a natural direction; probabil-
ities of a set of offspring given the two parental genotypes is easier
than of the parents given the offspring.
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4.5.3 Pedigree peeling:

e Similar ideas to HMM underlie pedigree peeling. We don’t have
Markov chain, but, for pedigrees with no loops, we do have that con-
ditionally of genotype (pair of haplotypes) of each individual, the data
“above” are independent of data “below”.

e For any individual ¢ Define:

Forwards/Down: R:(g) = Pr( data above, G; = g)
Backwards/Up: R!(g) = Pr( data below | G; = g)

e Equations very similar to HMM, at each stage putting in genotype
probabilities (if a founder), transmission probabilities from parents
to offspring, and probabilities of data marker and/or trait) given the
genotype.

e Hence, we can sum over all the unobserved genotypes to compute
the probability of trait and/or marker data; that is, the likelhood Pr(Y).

e Implemented in LIPED, LINKAGE, FASTLINK, VITESSE
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4.5.4 Joint pedigree peeling:

e The main problem with pedigree peeling is that the genotypes we
sum over, and the transmissions we consider, are of pairs of haplo-
types, jointly over loci.

e So computation is now linear in pedigree size but the number of
genotypes each individual can have is exponential in number of loci.
e Methods can be extended to
pedigrees with loops, but this is
even more computationally in-
tensive.

e Given genotypes on a cutset,
the data on individuals each
side of the cutset are indepen-
dent. — e.g. the red/pink and
blue/green sets.

e Above/below no longer well-
defined. Individuals may be
Below some but above others
in the same cutset.
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4.5.5 Monte Carlo given trait data — SIMLINK:

e In early 1980s, often we had trait data; trait data had simple known
models (e.g. dominant, recessive)

e Marker maps were just starting; marker typing was expensive. How
to persuade NIH to fund a linkage study? How to show the potential
data would have power to detect linkage, if present?

e We can simulate trait and marker data jointly quite easily, assuming
some trait model. But it is much better to simulate what marker data
would look like conditional on the trait data we have.

e Ploughman and Boehnke (1989) solved this problem: see next
slide. Their SIMLINK program produced Elods given the observed
data, and assuming a marker of some informativeness (e.g. 4 equifre-
quent alleles), at some distance from the trait locus (e.g. 10 cM).

e If this Elod is “big enough” then this indicates that the trait data are
sufficient for marker typing to be worth doing.
For some time, NIH required SIMLINK evidence in grant proposals.
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4.5.6 SIMLINK - cf markerdrop for steps (1) to (4):

e (1) Peel up at the trait locus, saving the Rj(g) for each trait-locus
genotype g of each individual <: RZT(g) = Pr( data below | G; = g).

e (2) Assign founder genotypes at the top, in accordance with trait
model and upward peeling.

e (3) Simulate genotypes back down at the trait locus, using the saved
partial sums — see 4.4.4 for HMM analogy.

e (4) Simulate marker genotypes at loci linked to the trait, at some
assumed marker allele frequencies and recombination fraction.

e (5) Do the lod score for each simulated data set.
e (6) Average over simulated data sets to compute an empirical Elod.

Note the analogy to the HMM realization of S (see 4.4.4). Here we
first ccmpute up (backwards in time), and then simlate down (for-
wards). (Note 2: Could peel any direction, but data are at bottom.)

Note 3: MORGAN/markerdrop is similar, but uses .S, ; not genotypes.
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4.6.1 What about big pedigrees with many markers??:

e The Lander-Green (or more generally HMM) approach is restricted
to relatively small pedigrees (m < 27).

e The Elston-Stewart approach (or more generally pedigree-peeling)
is restricted to just a few loci (¢ < 4).

e What about m and ¢ both large?

(1) Break up the pedigrees (to reduce m), and pretend they are unre-
lated. So compute lod scores independently for each piece, and sum
them. This loses information.

(2) Break up the chromosome (to very small ¢) — e.g. interval map-
ping, in which we use just two markers at a time, and hypothesize trait
locus positions between them. This loses information and requires
very tedious piecing together many lod-score segments (which don’t
match at the marker locations).
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4.6.2 Monte Carlo Estimation of lod scores:
e This formulation due to Lange and Sobel (1991).
It is similar to version implemented in MORGAN/Im_linkage.

e Let Z be trait data, and Y the marker data. Let v be hypothesized
position of trait locus (this v was d in 4.3.4). Then

Lv) _ B&Y) _ BE]Y)
L(o0) Pr(Z).Pr(Y) Pr(2)
e Now let S be the inheritance patterns S, ; at the marker loci.

P(Z|Y) = Y Py(Z]|S)P(S|Y)

e Suppose we could sample S from Pr(S | Y): giving realizations
S() k= 1,...,N. Then we could estimate P,(Z | Y) by averaging
the N values of P,(Z | S()). (These computed by pedigree peeling.)

e We can do this with one set of S(*) for all the hypothesized ~ and
hence get a Monte Carlo estimate of the map-specific lod score.
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4.6.3 MCMC sampling of S given marker data Y:

e The “SIMLINK” peeling approach (4.5.6) allows us to sample S, ;
given Y, ; at a single locus j, but not all loci at once.

e The HMM approach (4.4.4) allows us to sample S given Y for a
small number of meioses, but not all meioses at once.

e The independence of meioses ¢ and Markov dependence of vec-
tors S, ; provide good MCMC block Gibbs samplers: for £ loci and m
meioses.

L-sampler: resample S, ; given
Y and S. j, 7 # j' Heath 1997.
Uses pedigree computations, O(¢m).

MM-sampler: resample {S;.;i € I*}
|I*| = m* given'Y and {Sy.; ¢ & I*}
Uses HMM computation,

O(Um*2™), m* << m.

Tong & Thompson 2008
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4.6.4 Added notes re MCMC:

e L-sampler is irreducible, but does not mix well.
Depending on data Y, MM-sampler may not be irreducible.

e Together (random choice at each step) they do fine, and can be
used to provide estimates of the map-specific lod score across the
chromosome.

e This is the form of MCMC implemented in MORGAN. SIMWALK-2
uses quite a different framework for the MCMC — but the same lod
score estimator.

e For older, more spaced, miscrosatellite markers, we compute the
lod score at points in marker intervals (see Lab 5). With newer denser
SNP markers, we compute at a subset of the marker positions.

e The “Im” of Im_auto and Im_linkage programs in MORGAN indicates
these are MCMC programs using the LM-sampler - this combination
of locus-sampler (L) and meiosis-sampler (M).
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4.6.5 Estimating /bd probabilities by MCMC:

e Recall the inheritance patterns S determine the ibd pattern among
any set of “proband gametes” (maternal/paternal gametes of speci-
fied individuals).

e Since we have MCMC realizations of S given marker data Y, we
can use these to estimate patterns of ibd given Y.

e We can estimate at each locus j using .S, j, or we can estimate
jointly at sets of loci — e,g, over windows of a few loci.

e Data 7 at a trait locus t also provide inheritance information (espe-
cially i for a rare almost recessive trait, such as in Lab 4).

e It is possible to compute Pr(Z | S.:) —not in this class!
So, we can include the trait locus and trait data Z in the MCMC,
although computations are heavier.

e This is what is implemented in MORGAN/Im_auto, either for markers
only, or for markers with a simple trait locus included (e.g. Lab 4).
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blank slide:
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