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4.1.1 MULTILOCUS INHERITANCE SPECIFICATION:

Si,1 Si,2Si,3 · · · · · · Si,j−1 Si,j Si,j+1· · · Si,�

ρ1 ρ2 ρj−1 ρj

Ti,1 Ti,2 Ti,j−1 Ti,j

• Assume that � loci are ordered 1, . . . , � along the chromosome. Let
the intervals between successive loci be I1, . . . , I�−1.

• Si,j = 0 or 1 specifies inheritance at locus j in meosis i.
ρj is probability of recombination between locus j and locus j +1.

• S•,j = {Si,j, i = 1, ...,m} is the inheritance vector at locus j.
Si,• = {Si,j, j = 1, ..., �} is vector specifying meiosis or gamete i.

• Let Ti,j = 1 if a gamete i is recombinant on interval Ij,
and Ti,j = 0 otherwise (j = 1, . . . , �− 1). Then, in meiosis i,

Ti,j = 1 if Si,j �= Si,j+1, and
Ti,j = 0 if Si,j = Si,j+1, j = 1, . . . , �− 1.

Pr(Ti,j = 1) = Pr(Si,j �= Si,j+1) = ρj.
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4.1.2 MULTILOCUS INHERITANCE; NO INTERFENCE:

• A model for Si,• = {Si,j, j = 1, ..., �} is equivalent to a model for
(Ti,1, . . . , Ti,�−1); for example, some genetic interference model.

• The simplest models for meiosis assume no interference:
that is, that the Ti,j are independent, for all i and j.

• Then the Si,j are first-order Markov over loci j, with meioses i being
independent.

• One way to express this is that

Pr(Si,j | Si,1, ..., Si,j−1) = Pr(Si,j | Si,j−1)

so that Pr(Si,•) = Pr(Si,1)
��

j=2

Pr(Si,j | Si,j−1)

• Combining the meioses

Pr(S) = Pr(S•,1)
��

j=2

Pr(S•,j | S•,j−1)

where S = {Si,j; i = 1, ...,m, j = 1, ..., �}.
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4.1.3 CONDITIONAL INDEPENDENCE OF S:

• The Markov dependence may also be expressed as:
Given Si,j, Si,j−1 is independent of Si,j+1.

• Another useful way is to consider the probability of any given indica-
tor Si,j conditional on all the others, S−(i,j) = {Sk,l; (k, l) �= (i, j)}.

• Then Si,j depends only on the indicators for the same meiosis and
the two neighboring loci. For s = 0,1,

Pr(Si,j = s | S−(i,j)) = Pr(Si,j = s | Si,j+1, Si,j−1)

∝ ρ|s−Si,j−1|
j−1 (1− ρj−1)1−|s−Si,j−1| ρ|s−Si,j+1|

j (1− ρj)1−|s−Si,j+1|

where ρj = Pr(Si,j �= Si,j+1) is the recombination frequency in Ij.

• Note that the equation just indicates the recombination/non- recom-
bination events in intervals Ij−1 and Ij, implied by the three indicators
(Si,j−1, Si,j = s, Si,j+1).
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4.1.4 THE LOCUS j DATA PROBABILITIRS:

Recall in slides 2.5.1 to 2.5.5, we computed the single-locus compu-
tation of observed data on a set of individuals, in terms either of ibd
states J, or using the inheritance S.

Pr(Y) =
�

S

Pr(Y | S) Pr(S) =
�

S

Pr(Y | J(S)) Pr(S)

=
�

J

Pr(Y | J) Pr(J).

• In examples we used the ibd states, because there are fewer ibd
patterns J than values of S. For example, just (k0, k1, k2) for two
non-inbred individuals, regardless of what pedigree gave rise to them.

• However, although the component Si,j are Markov over loci j, gene
ibd patterns are not. Different values of S•,j may give rise to the
same ibd pattern. Grouping the states of a Markov chain does not, in
general, produce a Markov chain. So to use the Markov dependence,
we have to use S.

• Now let Y•,j denote all the data corresponding to locus j.
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4.1.5 THE HMM ACROSS LOCI FOR PEDIGREE DATA:
S•,1 S•,j−1 S•,j S•,j+1 S•,�

Y•,1 Y•,j−1 Y•,j Y•,j+1 Y•,�

Y ∗(j−1) Y †(j+1)

Pr(S) = Pr(S•,1)
l�

j=2

Pr(S•,j | S•,j−1)

• As before S•,j determines the ibd at locus j, and hence Pr(Y•,j|S•,j).

Then Pr(Y | S) =
��

j=1

Pr(Y•,j | S•,j).

• Note that, given S•,j,
Y ∗(j−1), Y•,j, and Y †(j+1) are mutually independent.

Also, given S•,j, Y ∗(j−1), Y•,j, and S•,j+1 are independent.
Also, given S•,j, Y †(j+1), Y•,j, and S•,j−1 are independent.
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4.2.1 Counting recombinants if S is observed:

• If S is observed, we can count recombinants.
Let Xm,j =

�
i male |Si,j+1−Si,j| be the number of recombinations

in interval Ij in male meioses, and Mm is the total number of male
meioses scored in the pedigree. Similarly for female meioses.

• Y is irrelevant to ρ-estimation, and the log-likelihood is

logPr(S) = log(Pr(S•,1)) +
�−1�

j=1

log(Pr(S•,j+1 | S•,j))

• Recombination parameters ρm,j and ρf,j enter only in

log(Pr(S•,j+1|S•,j)) =
Xm,j log(ρm,j) +(Mm −Xm,j) log(1− ρm,j)
+Xf,j log(ρf,j) +(Mf −Xf,j) log(1− ρf,j)

• �ρm,j = Xm,j/Mm, and �ρf,j = Xf,j/Mf ,
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4.2.2 S unobserved: An EM algorithm for genetic maps:

• ρm,j and ρf,j occur only in the term log(Pr(S•,j+1 | S•,j) of the
complete-data log-likelihood logPr(S,Y) =

log(Pr(S•,1))+
�−1�

j=1

log(Pr(S•,j+1 | S•,j))+
��

j=1

log(Pr(Y•,j | S•,j))

• E-step: The expected complete-data log-likelihood requires only
computation of E(log(Pr(S•,j+1 | S•,j)) | Y) or

X̃m,j = E(Xm,j | Y) =
�

i male

E(|Si,j+1 − Si,j| | Y)

and similarly X̃f,j.

• M-step: The new estimate of ρm,j is X̃m,j/Mm, and similarly for
all intervals j = 1,2,3, . . . , �− 1 and for both the male and female
meioses.

• The EM algorithm is thus readily implemented to provide estimates
of recombination frequencies for all intervals and for both sexes, pro-
vided E-step can be done. (See 4.4.2 for how we do this.)
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4.2.3 Given S: Ordering loci and testing for interference:

• Suppose we have three loci j = 1,2,3 at which S•,j is observed.
Assume recombination rates are the same for male and female meioses.

• We can choose the order that minimizes “double recombinants”:
i.e. meioses i in which Si,• = (0,1,0) or (1,0,1) or Ti = (1,1).

• More generally, for � loci known to be linked, we can seek the or-
dering of columns j of S that minimizes recombination events.

• For any two locus intervals,
Ij and Ik say, in the absence
of interference Ti,j and Ti,k are
independent if j �= k. (And the
meioses i are independent.)

Ti,k Ti,j

0 1
0 (1− ρk)
1 ρjρk? ρk

(1− ρj) ρj 1

• So to test for interference between Ij and Ik, we could just use a
2× 2 table for the counts of (Tj, Tk) over meioses.

• More generally (beyond the scope of this class!) we could fit a map
function to the patterns of recombination we see.
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blank slide:
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4.3.1 Baum algorithm for total probability:

S•,1 S•,j−1 S•,j S•,j+1 S•,�

Y•,1 Y•,j−1 Y•,j Y•,j+1 Y•,�

Y ∗(j−1) Y †(j+1)

• For data observations Y = (Y•,j, j = 1, . . . , �), we want to com-
pute Pr(Y). Due to the first-order Markov dependence of the S•,j,
we have

Pr(Y) =
�

S

Pr(S,Y) =
�

S

Pr(Y | S) Pr(S)

=
�

S



Pr(S•,1)
��

j=2

Pr(S•,j | S•,j−1)
��

j=1

Pr(Y•,j | S•,j)



 .

• Let Y ∗(j) = (Y•,1, . . . , Y•,j), the data along the chromosome up to
and including locus j. Note Y = Y ∗(�).
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4.3.2 The forwards Baum algorithm:

S•,1 S•,j−1 S•,j S•,j+1 S•,�

Y•,1 Y•,j−1 Y•,j Y•,j+1 Y•,�

Y ∗(j−1) Y †(j+1)

• Now define the joint probability

R∗
j(s) = Pr(Y•,k, k = 1, . . . , j − 1, S•,j = s) = Pr(Y ∗(j−1), S•,j = s)

with R∗
1(s) = Pr(S•,1 = s) = (1/2)m. Then

R∗
j+1(s) =

�

s∗

�
Pr(S•,j+1 = s | S•,j = s∗) Pr(Y•,j | S•,j = s∗) R∗

j(s
∗)
�

for j = 1,2, . . . , �− 1, with

Pr(Y) =
�

s∗

Pr(Y•,� | S•,� = s∗) R∗
�(s

∗).

• That is, we can compute the likelihood Pr(Y).
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4.3.3 The Lander-Green algorithm: Lander and Green (1987):

• The Genehunter algorithm is the forwards algorithm of 4.3.2.

• If there are m meioses on the pedigree, then S•,j can take 2m

values. Computations involve, for each locus, transitions from the 2m

values of S•,j to the 2m values of S•,j+1.

• Overall computation is order �22m.
For Genehunter, for a pedigree with n individuals, f of whom are
founders, m = 2(n− f)− f = 2n− 3f , and m ≤ 16.

• We can compute Pr(Y•,j | S•,j) for genetic marker data (2.5.3-5).
Also for data at a trait locus, where we observe only phenotypes

not genotypes, although this is (a bit) harder.

• Even if computation of Pr(Y•,j | S•,j) is easy for given S•,j, this must
be done for each locus and for each value of S•,j.

• The exact Lander-Green computation is limited to small pedigrees.
Although better algorithms using independence of meioses give us a
factored HMM which means we can get an algorithm of order m�2m

but is is still exponential in pedigree size. (MERLIN: m ≤ 27.)
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4.3.4 The linkage map-specific lod score:

• We hypothesize the trait locus at some position d on the chromo-
some, measured in genetic distance (cM):

L(d) = Pr(Y | trait locus is at d)

d = ∞ corresponds to ρ = 1
2, or absence of linkage.

• For Genehunter, distances are relative to first marker at d = 0.

• The map-specific lod score is log10(L(d)/L(∞)),
measured in genetic distance.

• The location score is defined as 2 loge(L(d)/L(∞)). Under ap-
propriate conditions, this statistic has approximately a chi-squared
distribution in the absence of linkage.

• Software for map-specific lod scores is implemented in Genehunter,
Allegro, and MERLIN (recommended for small pedigrees).
(Monte Carlo and/or MCMC versions are implemented in SIMWALK-
2 and in MORGAN.)
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