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3.3.1 THE PHASE-UNKNOWN BACKCROSS DESIGN:
• In human pedigrees, we often cannot classify all individuals as re-
combinant and non-recombinant.

• One possibility is a
phase-unknown backcross.
As before, one parent is
A1A2, B1B2 and the other
is A2A2, B2B2, but now we
do not know whether the first
parent is A1B1/A2B2 (type 1
haplotypes), or A1B2/A2B1
(type 2 haplotypes).

• Either “type-1” is recombinant, and “type-2” are not, or
“type-1” is non-recombinant, and “type-2” are recombinant.

• Suppose we have n such families, and in each type just two off-
spring. Each gets A2B2 from the father, so, as before, we know what
each got from the mother.
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3.3.2 TESTING FOR LINKAGE IN FAMILIES SIZE 2:

• If both offspring get the same “type” of haplotype (type 1 or type
2), then either both are recombinant, or neither is, so this event has
probability ρ2 + (1− ρ)2.

• If there is one of each type, then one offspring must be a recombi-
nant and the other not. This event has probability ρ∗ = 2ρ(1− ρ).

• Instead of a T ∼ B(n, ρ) recombinants, we have a W ∼ B(n, ρ∗)
families with one offspring of each “type”.

• For 0 ≤ ρ ≤ 1
2, ρ∗ is a 1-1 monotone increasing function of ρ.

Also, when ρ = 1
2, ρ∗ = 2 · 1

2 · 1
2 = 1

2.
So testing H0 : ρ = 1

2 against H1 : ρ < 1
2, is equivalent

to testing H∗
0 : ρ∗ = 1

2 against H∗
1 : ρ∗ < 1

2.

• The test is as before; reject ρ∗ = 1
2 and infer linkage if W < w0,

where the critical value w0 is determined by the desired type-1 error.

• The critical values are exactly as for the phase-known case, with ρ∗

replacing ρ, and n now denoting the number of two-child families.
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3.3.3 THE INTERCROSS LINKAGE DEISGN:

• Two phase-known hybrid parents, each of type A1B1/A2B2 are
mated.

• There are nine types of offspring, but these fall into four groups.
Each type within a group has the same probability, as a function of ρ,
and hence the total count of offspring in each group contains all the
available information for linkage. (These total counts are the sufficient
statistics for ρ.)

Type genotypes number each prob
I A1A1, B2B2; A2A2, B1B1 2 ρ2/4
II A1A2, B1B2 1 1

2(ρ
2 + (1− ρ)2)

III A1A1, B1B2 etc. 4 1
2ρ(1− ρ)

IV A1A1, B1B1; A2A2, B2B2 2 (1− ρ)2/4

• Group II includes both double-heterozygote two-locus genotypes
A1B1/A2B2 and A1B2/A2B1. Group III includes the four types
heterozygous at one of the two loci: A1A1, B1B2, A1A2, B1B1,
A2A2, B1B2 and A1A2, B2B2.
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3.3.4 INTERCROSS EXPERIMENT–TESTING FIT:

Types H2 : general H1:total prob H0 : ρ = 1
2

I q1
1
2ρ

2 0.125
II q2

1
2(ρ

2 + (1− ρ)2) 0.25
III q3 2ρ(1− ρ) 0.5
IV q4

1
2(1− ρ)2 0.125

• Consider a sample of size n, with nj in class j, j = 1,2,3,4. The
log-likelihood for these multinomial data is,

�n(q) = const +
4�

j=1

nj loge qj(ρ).

• The probabilities of each phenotype group are shown, under the
general multinomial model H2, the general linkage model H1, and in
the absence of linkage H0.

• For example, suppose n = (1, 72, 42, 85).
Under H2 : general qj,

�4
j=1 qj = 1, �qj = nj/n,

or q̂ = (0.005, 0.36, 0.21, 0.425). dim(H2) = 3.
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Testing the model, and testing for linkage; ctd:

• Under H1 : general ρ, for these data we find, by evaluating the
log-likelihood, that ρ̂ = 0.12 giving q(ρ̂) = (0.007, 0.394, 0.211,
0.387). dim(H1) = 1.

• The null hypothesis is of no linkage; H0 : ρ = 1
2.

dim(H0) = 0, with probs q(12) = (0.125,0.25,0.5,0.125).

• Estimated cell probabilities under H1 and H2 are in good agree-
ment, but quite different from those under H0.

• Computing the maximized log-likelihoods for Hi, i = 0,1,2, we
find that they are -307.76, -217.87, and -217.14 respectively.

• For testing null H0 against H1, the (base e) lod score is 89.9. Twice
this value (179.8) has approximately a χ2

1 if H0 is true. So H0 is
rejected.

• For testing null H1 against alternative H2, the lod score is 0.73,
and twice this value (1.46) is χ2

2 if H1 is true. So H1 is not rejected.
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Added notes:

• Thanks to Aaron:
In the test of H1 vs the general H2 we might be testing the assumed
50-50 Mendelian segregation ratios at each locus, for example.

• As with the phase-known backcross, this all extends to the estima-
tion and testing of two recombination frequencies ρm in males, and
ρf in females.

• Likelihood ratio tests may be used to test equality of male and fe-
male recombination frequencies.

• Note for the intercross experiment, each offspring gives us a male
and a female meiosis.

• However, the formulae get messy. For example:
Group III: 2ρ(1− ρ) becomes ρm(1− ρf) + ρf(1− ρm) since we
do not know which gamete is recombinant.

Dr Elizabeth A Thompson Stat 550: StatGen I: 2014



Chapter 3 - 20

3.3.5 POWER and SAMPLE SIZE:
• If ρ is the true value, the probability H0 : ρ = 1/2 is rejected is the
power function of the test.
We reject if T < k∗ = (n/2) + (

√
n/2)Φ−1(α), so

Pr(T < k∗; ρ) = Pr

�
T − nρ�
nρ(1− ρ)

<
k∗ − nρ�
nρ(1− ρ)

�

≈ Φ

�
k∗ − nρ�
nρ(1− ρ)

�
= Φ

�
Φ−1(α) +

√
n(1− 2ρ)

2
�

ρ(1− ρ)

�

again using the Normal approximation to the Binomial distribution.

• Power decreases over 0 ≤ ρ ≤ 1
2. Clearly, for a given sample size,

linkage is more easily detected when ρ is small. Conversely, for given
ρ, one may determine the sample size n required for given power.

• For phase-unknown backcross with 2-kid families:
The power and sample-size computations are exactly as for the phase-
known case, with ρ∗ replacing ρ, and n now denoting the number of
two-child families.
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3.3.6 Kullback-Leibler information:

• For general, we can find the Kullback-Leibler information, which is
just expected log-likelihood difference.
• For a sample of size n and true value of the parameter q:

Kn(q0;q) = Eq(�n(q) − �n(q0))

where q0 is some hypothesized value.

• For multinomial data, Kn takes a simple form. suppose there are c
categories and cell probabilities q = (qj), j = 1, ..., c.
Then �n(q) =

�c
j=1 nj loge qj and

Kn(q0;q) = n
c�

j=1

qj loge qj − n
c�

j=1

qj loge q0j

or, for a single observation,
K1(q0;q) =

c�

j=1

qj loge

�
qj
q0j

�
.

• In the case of linkage analysis data, qj = qj(ρ) and the null hy-
pothesis is H0 : ρ = 1

2 : q0j = qj(12).
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3.3.7 Information for testing for linkage; H0 : ρ = 1/2:

• Evaluating K1 for the above phase-known intercross experiment,
and for the previous binomial phase-known and phase unknown back-
cross experiments, we see the information per offspring individual:

True ρ 0.0 0.1 0.2 0.3 0.4 0.5
Intercross 1.04 0.479 0.226 0.089 0.021 0.0
Backcross:
phase known 0.69 0.368 0.193 0.082 0.021 0.0
phase unknown 0.35 0.111 0.033 0.006 0.0004 0.0

• This measures information for rejecting ρ = 1
2 when ρ is the true

value; the more ρ differs from 1
2 the more information there is.

• Each phase-known offspring contributes at least twice as much as
in the phase-unknown case (2 kids per family). When ρ is close to
1/2, the phase-unknown two-offspring design has low power.
• Each intercross offspring contains more information than a back-
cross offspring, but not twice as much information. As ρ → 1

2, there
is almost no additional information in the intercross design.
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3.3.8 Elods and sample size:

• The Kullback-Leibler information for testing ρ = 1
2 is the expected

base-e lod score at the true value ρT of the recombination frequency.
This base-10, is a measure very widely used in linkage analysis and
known as the Elod.
• Note that when n is large, we expect the base-e lod score to be
broadly equal to its expectation nK1.
• For our previous data with n = 200, we had ρ̂ = 0.12; in fact, the
data were simulated at ρ = 0.1. Then 200 × 0.479 is about 95, in
good agreement with the lod score value of 90 which we obtained.
• This also tells us that if we had realized that ρT might be around
0.1, it was very wasteful to breed 200 mice. When ρT = 0.1, about
20 mice are expected to give a lod score (base e) of more than 9; this
is plenty to detect that ρ �= 1

2.
• Note again that we have used natural logarithms in these examples,
contrary to standard practice in genetics.
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3.4.1 Data at linked loci can distinguish relationships:

• The simplest example is for the three unilateral (κ2 = 0) pairwise
relationships of grandmother-granddaughter (G), half-sisters (H), and
aunt-niece (N ).

• Each of these relationships has κ = (κ0, κ1, κ2) = (12,
1
2,0), and

hence they are indistinguishable on the basis of data at independently
segregating (unlinked) loci.
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3.4.2 Gene identity at two linked loci:

• For unilateral relationships, gene
identity at two linked loci is summa-
rized by

κ1,1(ρ) = P (share 1 gene ibd at
each of 2 loci at recombination ρ).

loc 2 locus 1
0 1

0 1− κ1
1 κ1,1 κ1

1− κ1 κ1 1

• For the three relationships G, H, N , we have

G : κ1,1(ρ) =
1

2
(1− ρ)

H : κ1,1(ρ) =
1

2
(ρ2 + (1− ρ)2) =

1

2
R say

N : κ1,1(ρ) =
1

2
((1− ρ)R + ρ/2).

Thus the relationships are identifiable of the basis of data at two
linked loci (0 < ρ < 1

2), but not on the basis of data at unlinked
loci. All the three relationships have κ1,1(0) = 1

2 and κ1,1(12) = 1
4.
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3.4.3 A real-data example of three related individuals:
• Genotypes at many markers were
available on three putative sibs.
• Two were very likely sibs, but the
third seemed to be an aunt, niece,
or half-sister of the pair.
• To distinguish these alterna-
tives we must consider loci jointly
(linked), and the three individuals
jointly (not pairwise).
See next page for the ibd state probabilities.

Individuals
Pairwise Joint

Loci unlinked H ≡ N ≡ A H ≡ N
Loci linked N ≡ A H,N,A identifiable

• First thought to be H (usual conjecture). A is genetically unlikely.
Due to missing data, H and N were hard to resolve.
But missing sib, mom of N , was found mislabeled in another family.
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3.4.4 The ibd states for the above example:

Gene ibd state Prior (pedigree) probability
for two sibs with (a) an aunt (b) a niece or half-sib
Sibs sharing 2 ibd
1 2 1 2 1 3 1/8 1/8
1 2 1 2 3 4 1/8 1/8
Sibs sharing 1 ibd
1 2 1 3 1 4 1/8 1/8
1 2 1 3 2 3 1/16 0
1 2 1 3 2 4 1/16 1/8
1 2 1 3 3 4 1/16 1/8
1 2 1 3 4 5 3/16 1/8
Sibs sharing 0 ibd
1 2 3 4 1 3 1/16 0
1 2 3 4 1 5 1/16 1/8
1 2 3 4 3 5 1/16 1/8
1 2 3 4 5 6 1/16 0
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3.4.5 Two-locus kinship:

• Kinship is the probability that gametes segregating from individuals
are ibd. Two-locus kinship is the probability gametes are ibd at both
of two linked loci.

• For a single locus, recall that kinship ψ is given by
ψ = (κ1 + 2κ2)/4 = κ1/4 if κ2 = 0 (unilateral relatives) .

• For two loci, although κ1,1(ρ) is sufficient to specify pairwise geno-
type and phenotype distributions, it may not determine the two-locus
kinship of the individuals, because the shared genes at the two loci
may be on the same haplotype in the individual, or on different ones.

• In fact, in H they are necessarily on the same (maternal) haplotype
in the two half-sibs, while in G they may be on either haplotype of
the grandmother. In fact, G and H have the same two-locus kinship,
(1/8)(1− ρ)2R.

• For N , for the first term they are on the same haplotype in the aunt,
while the last term corresponds to the case where the genes at the
two loci are on two different haplotypes in the aunt.
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3.5.1 HOMOZYGOSITY MAPPING: Likelihoods for linkage:

• Consider the case of just 2 loci: a trait locus with a recessive allele
causing the disease, and a marker locus with some number of alleles.

• Suppose the frequency of the recessive disease allele is q, and at
the marker locus alleles Ai have frequencies pi.
• Suppose that the affected individ-
ual has inbreeding coefficient f , and
probability f2(ρ) of carrying genes
ibd at both of two loci between which
the recombination frequency is ρ.

loc 2 locus 1 ibd
ibd no yes
no 1− f

yes f2(ρ) f
1− f f 1

• Then the probability the individual is autozygous at a specific one
of the two loci but not the other is f − f2(ρ), and the probability he is
autozygous at neither is (1− 2f + f2(ρ)).

• Note at ρ = 0, f2(0) = f (the two loci segregate together),
then the four cell probabiities are (1− f), 0. 0, and f .
At ρ = 1/2, f2(1/2) = f2 (the two loci segregate indepedently).
and we have (1− f)2, f(1− f), f(1− f), and f2.
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3.5.2 Likelihoods for linkage:

• Probabilities at the trait locus
and at the marker, given ibd and
given non-ibd.

trait marker
affected AjAj AjAl

ibd q pj 0
not-ibd q2 p2j 2pjpl

• If the individual has marker phenotype AjAl the likelihood ratio is

L(ρ)

L(ρ = 1
2)

=
Pr(data ; ρ)

Pr(data ; ρ = 1
2)

=
2pjpl(q(f − f2(ρ)) + q2(1− 2f + f2(ρ)))

2pjpl(q(f − f2) + q2(1− f)2)

=
(f − f2(ρ)) + q(1− 2f + f2(ρ)))

(1− f)(f + q(1− f))
.

The coefficient of f2(ρ) in numerator is (−1+ q) < 0.

LR increases, as f2(ρ) decreases, and as hence ρ increases: ρ̂ = 1
2.
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The likelihoods ctd.:

• If the individual has marker phenotype AjAj the likelihood ratio is

L(ρ)

L(ρ = 1
2)

=
Pr(data ; ρ)

Pr(data ; ρ = 1
2)

=
qpjf2 + q2pj(f − f2) + qp2j (f − f2) + q2p2j (1− 2f + f2)

qpjf2 + q2pjf(1− f) + qp2j f(1− f) + q2p2j (1− f)2

=
f2 + q(f − f2) + pj(f − f2) + qpj(1− 2f + f2)

f2 + qf(1− f) + pjf(1− f) + qpj(1− f)2
.

• The coefficient of f2(ρ) is (1− q)(1− pj) > 0. LR increases as
f2(ρ) increases, i.e. as ρ decreases, so ρ̂ = 0, f2(0) = f and

L(ρ = 0)

L(ρ = 1
2)

=
f + (1− f)qpj

(f + (1− f)q)(f + (1− f)pj)
.

This is always ≥ 1, and increases as q or pj → 0.

• For q ≈ 0, L(ρ = 0)/L(ρ = 1
2) → 1/(f + (1− f)pj),
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3.5.3 Lod scores and elods:

• Log-likelihoods are additive over unrelated pedigrees i. The base-
10 lod score is

lod(ρ) =
�

i

log10

�
Li(ρ)

Li(ρ = 1
2)

�

where Li(·) is the likelihood contributed by pedigree i. The maxi-
mized lod score is max0≤ρ≤1

2
(lod(ρ)). Combining over pedigrees, ρ̂

may be neither 0 nor 1
2. Then f2(ρ) is also relevant, not only f .

• Again, a useful measure of information for linkage analysis is the
elod:

elod(ρ) = Eρ(lod(ρ)).

The elod is additive over independent pedigrees.
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Example:

• For simplicity consider ρ = 0 and q ≈ 0. Then each affected
individual has prob ≈ 1 of having two ibd genes at the disease locus,
and hence also at marker (ρ = 0), and so has prob pj of being AjAj.
Hence each contributes

−
�

j

pj log(f + (1− f)pj).

to the elod. For example, for the affected offspring of first-cousin mar-
riages (f = 1/16), and a polymorphic marker locus (for example,
pj = 0.1 for each of 10 alleles) the value is log10(6.4) = 0.81.
(Just 4 such individuals could give a base-10 elod of 3.)

• Note the sensitivity of lod scores and elods to the marker allele
frequency. For example: As above, a homozygous AjAj individual
gives lod-score contribution

− log10(f + (1− f)pj) = log10(16/(1 + 15pj)) if f = 1/16.

If pj = 0.1 this is 0.81. if pj = 0.5 this is 0.30. Incorrectly assuming
too small an allele frequency can give false evidence for linkage.
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3.5.4 Allelic association and fine-scale mapping:

• A small number of unrelated affected individuals all homozygous
at the same polymorphic marker locus provides strong evidence for
linkage. Even more so if they share the same marker allele – WHY?
Recall the origin and decay of LD (1.6.2).
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