Chapter 3: Genes on chromosomes

3.1	Linkage, recombination, and genetic maps	3-1
3.2	Likelihoods and linkage lod scores	3-7
3.3	Linkage designs, power, sample size and information	3-14
3.4	Two-locus kinship and <i>ibd</i>	3-24
3.5	ibd and linkage lod scores	3-30

Dr Elizabeth A Thompson

Stat 550: StatGen I: 2014

Chapter 3 - 1

3.1.1 MEIOSIS INDICATORS AT MULTIPLE LOCI:

ullet Segregation of DNA at a locus j is fully specified by meiosis indicators

 $S_{i,j} = 0$ if DNA copied at locus j is parent's maternal DNA = 1 if DNA copied at locus j is parent's paternal DNA

where i = 1, ..., m indexes the meioses.

• Mendel's First Law: $S_{i,j}$ are independent over i with

$$\Pr(S_{i,j} = 0) = \Pr(S_{i,j} = 1) = \frac{1}{2}.$$

- $S_{i,j}$ are independent for loci j on different chromosome pairs $S_{i,j}$ are dependent among loci j on the same chromosome pair
- The vector $S_{\bullet,j} = \{S_{i,j}, i = 1, ..., m\}$ is known as the inheritance vector at that locus.

ibd at locus j is a function of the inheritance vector $S_{\bullet,j}$.

3.1.2 RECOMBINATION BETWEEN TWO LOCI:

- ullet Recall there is recombination if the genes at the two loci j and l come from different parental chromosomes (different grandparents).
- ullet For two given loci (l and j) the recombination frequency ho between them is

$$\rho = \Pr(S_{i,l} \neq S_{i,j})$$
 for each $i, 0 \leq \rho \leq \frac{1}{2}$.

- The pairwise distribution of $(S_{i,j}, S_{i,l})$ is determined by ρ .
- For loci that are close together on a chromosome, ρ is close to 0. For independently segregating loci, $\rho = \frac{1}{2}$.

$S_{i,l}$	S_{\cdot}		
,	0	1	
0	$(1 - \rho)/2$	ho/2	1/2
1	ho/2	$(1 - \rho)/2$	1/2
	1/2	1/2	1

• In practice, recombination frequencies vary among meioses, a major factor in this variation being the sex of the parent. Computationally, this can be incorporated.

Dr Elizabeth A Thompson

Stat 550: StatGen I: 2014

Chapter 3 - 3

3.1.3 MULTILOCUS RECOMBINATION: NO INTERFERENCE:

$$S_{i,1} S_{i,2} S_{i,3} \cdots S_{i,j-1} S_{i,j} S_{i,j+1} \cdots S_{i,\ell}$$

$$T_{i,1} T_{i,2} T_{i,j-1} T_{i,j}$$

- $S_{i,j}$ specifies inheritance at locus j in meosis i. ρ_j is probability of recombination between locus j and locus j+1. $T_{i,j}$ is indicator of recombination between locus j and locus j+1 in meiosis i.
- $\Pr(T_{i,j} = 1) = \Pr(S_{i,j} \neq S_{i,j+1}) = \rho_j$.
- Assume all the $T_{i,j}$ are independent (i.e. no genetic interference). Then $S_{i,j}$ are Markov over j Given $S_{i,j}$, $S_{i,j-1}$ is independent of $S_{i,j+1}$.
- Recombination probabilities are not additive. $(\rho_{1:3} \neq \rho_1 + \rho_2)$ For example: $\rho_{1:3} = \Pr(S_{i,1} \neq S_{i,3}) = \rho_1(1 - \rho_2) + \rho_2(1 - \rho_1)$. For example: if $\rho_1 = \rho_2 = 0.1$ then $\rho_{1:3} = 0.18$ (see lab 3).

3.1.4 GENETIC DISTANCE AND THE CROSSOVER PROCESS:

- ullet Between two loci, the genetic distance d in Morgans is the expected number of crossovers between the loci on a given gamete.
- Regardless of the crossover process (i.e. regardless of dependence in number and locations of crossovers), genetic distance is always additive, since expectations are additive.
- Usually we measure genetic distance in centiMorgans, because a Morgan can be a whole chromosome.
 100cM = 1 Morgan.
- Genetic distance has little to do with physical distance; but 1cM $\approx 10^6$ bp is a very useful overall rule.
- In a given meiosis, between two loci, recall there is recombination, if, in the offspring gamete, there is an odd number of crossovers between the loci.
- The recombination probability, $\rho(d)$, as a function of d is the *map* function.

Dr Elizabeth A Thompson

Stat 550: StatGen I: 2014

Chapter 3 - 5

3.1.5 THE HALDANE MAP FUNCTION:

- In the model of Haldane (1919), crossovers are assumed to occur as a Poisson process, rate 1 per Morgan (by defn.). The number of crossovers C(d) in genetic distance d is Poisson with mean d.
- This is a model of no genetic interference. The numbers of crossovers in disjoint intervals are independent, and, conditionally on the number occurring, their locations are uniformly and independently distributed.
- Under Haldane's model, $\rho(d)$ is the probability that a Poisson random variable with mean d is odd:

$$\rho(d) = \sum_{k \text{ odd}} e^{-d} \frac{d^k}{k!} = \frac{1}{2} e^{-d} \sum_{k=0}^{\infty} \left(\frac{d^k}{k!} - \frac{(-d)^k}{k!} \right)$$
$$= \frac{1}{2} e^{-d} (e^d - e^{-d}) = \frac{1}{2} (1 - \exp(-2d)).$$

- Under this model, $\rho(d)$ is an increasing function of d, $\rho(d) \to \frac{1}{2}$ as $d \to \infty$, and $\rho(d) \approx d$ as $d \to 0$.
- If $\rho = 0.1$, d = 0.1115 (11.15 cM). If $\rho = 0.18$, d = 0.223.

Dr Elizabeth A Thompson

Stat 550: StatGen I: 2014

3.1.6 INTERFERENCE and OTHER MAP FUNCTIONS:

- In fact, interference exists, mainly in crossovers inhibiting the nearby presence of others, and the requirement for reliable meiosis that there is at least one chiasma on every chromosome pair.
- Pairwise interference can be characterized by coincidence function:

$$c_i(j,j') = rac{\Pr(T_{i,j} = T_{i,j'} = 1)}{\Pr(T_{i,j} = 1) \Pr(T_{i,j'} = 1)} \begin{cases} < 1 \text{ positive interference} \\ = 1 \text{ no interference} \\ > 1 \text{ negative interference} \end{cases}$$

- There are lots of models the model determines the map function. The reverse is not true. An important positive interference map function is the Kosambi (1944) map function: many published maps of 1970s-1990s are in Kosambi cM.
- Inference and estimation is always in terms of ρ . A map function simply allows representation on a linear map. The important thing is to use the correct map function when transforming between published genetic distances and ρ .
- Almost all multilocus computations assume no interference.

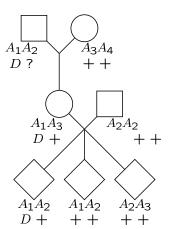
Dr Elizabeth A Thompson

Stat 550: StatGen I: 2014

Chapter 3 - 7

3.2.1 COUNTING RECOMBINANTS:

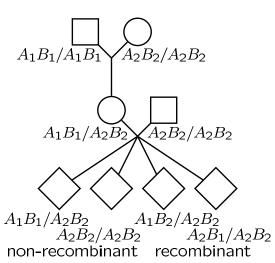
• Linkage analysis is concerned with estimating ρ and with testing the null hypothesis H_0 : $\rho = \frac{1}{2}$ against the alternative H_1 : $\rho < \frac{1}{2}$. Estimates and tests are based on likelihoods and likelihood ratios.



- At a DNA marker locus, two grandparents have types A_1A_2 and A_3A_4 ; their daughter has type A_1A_3 .
- She marries someone of type A_2A_2 and their three children are of types A_1A_2 , A_1A_2 and A_2A_3 .
- \bullet Granddad, the daughter, and the first child all carry some trait allele D. Other individuals carry only normal + alleles.
- From grandparents to Mom we can phase her as A_1D/A_3+ . To her three kids, kids 1 and 3 are non-recombinant $(X_1=X_3=0)$ and kid 2 is recombinant $(X_2=1)$. So n=3, the number of recombinants $T \sim B(3,\rho)$, and T takes the value t=1.

3.2.2 BACKCROSS DESIGN (Phase known):

- Where each offspring can be classified recombinant or non-recombinant, as above, the number of recombinants in n observed offspring is $T \sim B(n, \rho)$.
- Such data arise in a backcross experiment using two inbred lines:



Line 1: alleles A_1 and B_1 (genotype A_1B_1/A_1B_1),

Line 2: alleles A_2 and B_2 (genotype A_2B_2/A_2B_2).

Hybrid (F1): all have genotype A_1B_1/A_2B_2 .

Backcross to line 2: all get A_2B_2 from the line-2 parent; combination A_1B_1 , A_2B_2 (non-recombinant), A_1B_2 or A_2B_1 (recombinant) from the F1 parent observable.

(Note: Have A-locus, (alleles A_1 , A_2) and B-locus.)

Dr Elizabeth A Thompson

Stat 550: StatGen I: 2014

Chapter 3 - 9

3.2.3 BACKCROSS ANALYSIS:

• Suppose n offspring of such matings are scored, and t are recombinant. To test for linkage, compare the likelihood to its value in the absence of linkage $(\rho = \frac{1}{2})$: the log-likelihood difference is

$$lod(\rho) = \ell(\rho) - \ell(\frac{1}{2})$$

= $t log(\rho) + (n-t) log(1-\rho) + n log(2).$

With base-10 logs, this is known as the lod score.

The MLE of ρ is $\widehat{\rho}=t/n$, provided $2t \leq n$ (since $\rho \leq \frac{1}{2}$). To test $\rho = \frac{1}{2}$ against $\rho < \frac{1}{2}$, the maximized lod score is:

$$\operatorname{lod}(\widehat{\rho}) = t \log t + (n-t) \log(n-t) - n \log(n/2)$$

provided $2t \le n$, and 0 otherwise. This is a decreasing function of t, and we reject the null hypothesis $\rho = \frac{1}{2}$ if $t < t_0$ with critical value t_0 chosen to give a specified size of the test (type I error).

3.2.4 TYPE-1 ERROR and CRITICAL VALUES:

- When n is large, T is approximately $N(n\rho, n\rho(1-\rho))$. If $\rho = \frac{1}{2}$. $T \sim N(\frac{n}{2}, \frac{n}{4})$, is good approximation.
- Then $\frac{2}{\sqrt{n}}(T-\frac{n}{2})\sim N(0,1)$. For a test size (type-1 error) α , reject H_0 in favor of $H_1: \rho<\frac{1}{2}$ if $\frac{2}{\sqrt{n}}(T-\frac{n}{2})\leq \Phi^{-1}(\alpha)$ where Φ is the standard Normal cdf.
- For example, for $\alpha = 0.025$, $\Phi^{-1}(\alpha) = -1.96 \approx -2$, so reject H_0 if $T \leq \frac{n}{2} \sqrt{n} = k^*$.

offspring	critical	recombinant	lod score	recombinants
sampled	value	proportion	$lod_{10}(k^*/n)$	for lod
n	k^*	k^*/n		score 3
25	≈ 7	≈ 0.3	1.088	≤ 3
100	≈ 40	≈ 0.4	0.874	≤ 31
625	≈ 287	≈ 0.46	0.905	≤ 267
1024	≈ 480	≈ 0.48	0.869	≤ 4 52

 \bullet Table of critical values for a test size $\alpha = 0.025$ and base-10 lod scores for binomial samples.

Dr Elizabeth A Thompson

Stat 550: StatGen I: 2014

Chapter 3 - 11

Added comments:

- The (base 10) \log score is around 1 for a number of recombinants at the critical value for a test of size $\alpha = 0.025$ of H_0 : $\rho = \frac{1}{2}$.
- ullet Traditionally, a base-10 \log score of 3 is required to infer linkage. This is a more stringent test, the idea being that if two arbitrary locations in the genome are chosen the prior probability of linkage is small.
- Also given in the table is the upper bound on the number of recombinants that will provide a lod score of 3.
- The type-1 error at this lod-score-3 critical value k^{**} is $\Phi((2k^{**}-n)/\sqrt{n})$ which is order 10^{-4} .

3.2.5 TESTING USING natural (base-e) LOD SCORES:

Here and on next page we use base-e logs and lods!!

$$\ell(\rho) = t \log(\rho) + (n-t) \log(1-\rho), \quad \widehat{\rho} = t/n$$

$$\ell(\widehat{\rho}) = t \log t + (n-t) \log(n-t) - n \log n$$

$$\ell(1/2) = t \log(1/2) + (n-t) \log(1-1/2) = n \log(1/2)$$

$$\log(\rho) = \ell(\rho) - \ell(1/2)$$

- $\log(\rho) = \ell(\rho) \ell(1/2)$
- Example 1: H_0 : $\rho = 0.1$ $2(\ell(\hat{\rho}) \ell(0.1)) \sim \chi_1^2$ if H_0 is true.
- Example 2: But we want to test H_0 : $\rho = 0.5$ Then $2(\ell(\widehat{\rho}) - \ell(0.5)) = 2\mathrm{lod}(\widehat{\rho})$ If H_0 is true, then half the time $\widehat{\rho} = 0.5$, and $\ell(\widehat{\rho}) = \ell(0.5)$. So $2(\ell(\widehat{\rho}) - \ell(0.5))$ is $(1/2) \times 0 + (1/2) \times \chi_1^2$ if there is no linkage. (Note: mixture of these r.vs, not average!!.)
- This is the analogue of doing a one-sided test in testing based on the number of recombinants.

Dr Elizabeth A Thompson

Stat 550: StatGen I: 2014

Chapter 3 - 13

3.2.6 Testing equality of recombination frequencies:

- Suppose we see t_m recombinants in n_m male meioses and t_f recombinants in n_f female meioses. Then we can test H_0 : $\rho_m = \rho_f$.
- Unconstrained case (general hypothesis):

$$\ell(\rho_m, \rho_f) = t_m \log(\rho_m) + (n_m - t_m) \log(1 - \rho_m) + t_f \log(\rho_f) + (n_f - t_f) \log(1 - \rho_f)$$

maximized by $\widehat{\rho_m} = t_m/n_m$, $\widehat{\rho_f} = t_f/n_f$.

• Under H_0 : if $\rho_m = \rho_f = \rho$,

$$\ell(\rho, \rho) = (t_m + t_f) \log(\rho) + (n_m + n_f - t_m - t_f) \log(1 - \rho)$$

maximized by $\widehat{\rho} = (t_m + t_f)/(n_m + n_f)$.

• If H_0 is true, $2(\ell(\widehat{\rho_m}, \widehat{\rho_f}) - \ell(\widehat{\rho}, \widehat{\rho}))$ is χ_1^2 . (2 parameters in general, 1 under H_0) Remember to use **base-e** logs.