2.3.1 ibd OF FOUR GENES IN TWO INDIVIDUALS:

				state description	
				individuals	genes
				autozygous	shared
$\bullet \bullet$	$\bullet \bullet$	1111	1111	B_{1}, B_{2}	4 genes ibd
	- 0	1112	1112	B_{1}	3 genes ibd
-	$\bigcirc \bullet$	1121			
\bullet	- -	1211	1211	B_{2}	3 genes ibd
- 0	\bigcirc	1222			
$\bullet \bullet$	$\bigcirc \bigcirc$	1122	1122	B_{1}, B_{2}	none
- -	$\bigcirc \dagger$	1123	1123	B_{1}	none
- 0	$\dagger \dagger$	1233	1233	B_{2}	none
- 0	- 0	1212	1212	none	2 genes
- 0	$\bigcirc \bullet$	1221			shared
- 0	- \dagger	1213	1213	none	1 gene
- 0	\dagger -	1231			shared
- 0	$\bigcirc \dagger$	1223			
- 0	\dagger -	1232			
- 0	$\dagger \star$	1234	1234	none	none

2.3.2 ibd OF ANY NUMBER OF GENES:

Label $2 k$ genes of k individuals sucessively, giving each the label previously assigned to genes to which it is ibd, and otherwise the next available integer.
1213441 5: the paternal genes of individuals $1,2,4$ are ibd and the two genes of individual 3 are ibd.
Reduce to genotypically equivalent classes of states:
$12134415 \equiv 12314415 \equiv 12314451 \equiv$
$12134451 \equiv 12234425 \equiv 12324425 \equiv$ $12324452 \equiv 12234452$
Note that when the two genes of the first individual are interchanged, we must relabel the genes $1 \leftrightarrow 2$, to obtain a legal state label.

- The case of 4 genes of two individuals is shown in the Table of 2.3.1: there are 15 states and 9 state classes.
- For 12 genes in 6 individuals there are more than 4 million states, but only about 198,000 state classes (Thompson, 1974).
- For the computers of 1974 , even 198,000 was large, but possible.

2.3.3 ibd OF TWO NON-INBRED RELATIVES:

For two non-inbred relatives, 7 states, 3 classes, 2 probs

$$
\begin{aligned}
\kappa_{i} & =\operatorname{Pr}(i \text { genes } i b d), \quad \kappa_{2}+\kappa_{1}+\kappa_{0}=1 \\
\psi & =\frac{1}{2} \kappa_{2}+\frac{1}{4} \kappa_{1}+0 \kappa_{0}=\frac{1}{4}\left(2 \kappa_{2}+\kappa_{1}\right) \\
\text { If } \kappa_{2} & =0, \quad \kappa_{1}=4 \psi .
\end{aligned}
$$

Pairwise relationship	κ_{0}	κ_{1}	κ_{2}	ψ
Unrelated (U)	1.00	0	0	0
Parent-offspring (P)	0	1.00	0	0.25
Monozygous twin (M)	0	0	1.00	0.50
Half sib (H),grandad (G),aunt (N)	0.50	0.50	0.00	0.125
Full Sib (S)	0.25	0.50	0.25	0.25
First cousin (FC)	0.75	0.25	0	0.0625
Double first cousin (DFC)	0.5625	0.375	0.0625	0.125
QHFC (Q)	0.5312	0.4375	0.0312	0.125

2.3.4 THE RELATIONSHIP TRIANGLE:

- Three numbers that sum to $1\left(\kappa_{2}+\kappa_{1}+\kappa_{0}=1\right)$ can be represented as a point in an equilateral triangle of unit height.
- κ_{i} is the perpendicular distance from the side $\kappa_{i}=0$, opposite the vertex $\kappa_{i}=1, i=0,1,2$

2.3.5 COMPUTATION OF ibd PROBABILITIES:

- The following equations relate ψ and $\kappa_{i}, i=0,1,2$.

$$
\begin{aligned}
\psi & =(1 / 2) \kappa_{2}+(1 / 4) \kappa_{1}=(1 / 4)\left(1+\kappa_{2}-\kappa_{0}\right) \\
\psi & =(1 / 4)\left(\psi_{m m}+\psi_{m f}+\psi_{f m}+\psi_{f f}\right) \\
\kappa_{2} & =\psi_{m m} \psi_{f f}+\psi_{m f} \psi_{f m}-\text { new equation } \\
\kappa_{1} & =4 \psi-2 \kappa_{2}, \quad \kappa_{0}=1-\kappa_{1}-\kappa_{2}
\end{aligned}
$$

- Example: double first cousins:

$$
\begin{aligned}
& \psi_{m m}=\psi_{f f}=1 / 4 \text { and } \psi_{m f}=\psi_{f m}=0 \text { or vv. } \\
& \kappa_{2}=1 / 16, \psi=1 / 8, \text { so } \kappa_{1}=3 / 8, \kappa_{0}=9 / 16
\end{aligned}
$$

- The inequality:

$$
\begin{aligned}
4 \kappa_{2} & =4 \psi_{m m} \psi_{f f}+4 \psi_{m f} \psi_{f m} \leq\left(\psi_{m m}+\psi_{f f}\right)^{2}+\left(\psi_{m f}+\psi_{f m}\right)^{2} \\
& \leq\left(\psi_{m m}+\psi_{f f}+\psi_{m f}+\psi_{f m}\right)^{2}=(4 \psi)^{2}=\left(2 \kappa_{2}+\kappa_{1}\right)^{2} \\
4 \kappa_{2} & \leq 4 \kappa_{2}\left(\kappa_{2}+\kappa_{1}\right)+\kappa_{1}^{2} \text { or } 4 \kappa_{2}\left(1-\kappa_{2}-\kappa_{1}\right) \leq \kappa_{1}^{2} \\
\text { So } & 4 \kappa_{2} \kappa_{0} \leq \kappa_{1}^{2}
\end{aligned}
$$

with equality if and only if $\psi_{m m}=\psi_{f f}$ and $\psi_{m f}=\psi_{f m}=0$ or vv .

2.3.6 DOUBLE COUSINS \& QUAD HALF COUSINS:

- Each shares $1 / 4$ of her maternal and of her paternal genome ibd with the other individual (on average).
- For QHFC, each of the mom and dad of each individual is related to both the mom and the dad of the other individual, but mom is not related to dad.
- For DFC, probability of sharing maternal and paternal genome ibd with the other individual is $(1 / 4) \times(1 / 4)=1 / 16$.
For QHFC this is $1 / 32$.

2.3.7 EXAMPLE OF QUAD HALF FIRST COUSINS:

Each of the mother and the father of each child is related to both the mother and the father of the other. But, for each child, the mother is not related to the father.

Then all four of $\psi\left(M_{1}, M_{2}\right), \psi\left(F_{1}, F_{2}\right), \psi\left(M_{1}, F_{2}\right)$ and $\psi\left(F_{1}, M_{2}\right)$ are non-zero without the children being inbred.

For QHFC,
$\psi\left(M_{1}, M_{2}\right)=\psi\left(F_{1}, F_{2}\right)=\psi\left(M_{1}, F_{2}\right)=\psi\left(F_{1}, M_{2}\right)=1 / 8$
so $\kappa_{2}=1 / 32, \psi=1 / 8, \kappa_{1}=4 \psi-2 \kappa_{2}=7 / 16$,
$\kappa_{0}=1-\kappa_{2}-\kappa_{1}=17 / 32$

2.4.1 DATA ON NON-INBRED RELATIVES:

- IDEA: given relationship $\mathcal{R}, \operatorname{Pr}(\mathbf{Y} \mid \mathcal{R})=\sum_{\mathbf{J}} \operatorname{Pr}(\mathbf{Y} \mid \mathbf{J}) \operatorname{Pr}(\mathbf{J} \mid \mathcal{R})$ where \mathbf{J} are all possible relevant patterns of $i b d$.
- EXAMPLE: one individual; 2 genes; 2 states—ibd or not;

$$
\begin{aligned}
\mathbf{J} & =(I, N), \quad \operatorname{Pr}(I)=f, \operatorname{Pr}(N)=1-f \\
\operatorname{Pr}(A A) & =\operatorname{Pr}(A A \mid I) f+\operatorname{Pr}(A A \mid N)(1-f) \\
& =q f+q^{2}(1-f)=q^{2}+f q(1-q)
\end{aligned}
$$

- EXAMPLE: two non-inbred individuals; 3 states - 2, 1, or 0 ibd $\mathbf{Y}=\left(G_{1}, G_{2}\right)=$ data on $B_{1}, B_{2} \cdot \mathcal{R}=$ relationship: $\operatorname{Pr}(\mathbf{Y} \mid \mathcal{R})$

$$
\begin{aligned}
= & \kappa_{0}(\mathcal{R}) \operatorname{Pr}\left(\mathbf{Y} \mid J_{0}\right)+\kappa_{1}(\mathcal{R}) \operatorname{Pr}\left(\mathbf{Y} \mid J_{1}\right)+\kappa_{2}(\mathcal{R}) \operatorname{Pr}\left(\mathbf{Y} \mid J_{2}\right) \\
= & \kappa_{0}(\mathcal{R}) \operatorname{Pr}(\mathbf{Y} \mid \text { Unrel })+\kappa_{1}(\mathcal{R}) \operatorname{Pr}(\mathbf{Y} \mid \text { Par }- \text { offsp }) \\
\quad & \quad+\kappa_{2}(\mathcal{R}) \operatorname{Pr}(\mathbf{Y} \mid \mathbf{M Z}-\text { twins }) \\
= & \kappa_{0}(\mathcal{R}) \operatorname{Pr}\left(G_{1}\right) \operatorname{Pr}\left(G_{2}\right)+\kappa_{1}(\mathcal{R}) \operatorname{Pr}\left(G_{1}\right) \operatorname{Pr}\left(\text { kid }=G_{2} \mid \text { par }=G_{1}\right) \\
& +\kappa_{2}(\mathcal{R}) \operatorname{Pr}\left(G_{1}\right) I\left(G_{2} \equiv G_{1}\right)
\end{aligned}
$$

2.4.2 PARENT-OFFSPRING PROBABILITIES:

- Offspring should share allele with parent; provided there are no typing errors.
- Probabilities Pr (child \mid parent): any number of alleles

parent genotype	$A_{i} A_{i}$	$A_{i} A_{j}$	$A_{i} A_{k}$	$A_{j} A_{k}$
$A_{i} A_{i} p_{i}^{2}$	p_{i}	p_{j}	p_{k}	0
$A_{i} A_{j}$	$2 p_{i} p_{j}$	$\frac{1}{2} p_{i}$	$\frac{1}{2}\left(p_{i}+p_{j}\right)$	$\frac{1}{2} p_{k}$

- For markers with just 2 alleles:

parent geno.	Pr (parent, child). child genotype			Data count hild geno.		
	AA	$A B$	$B B$	AA	$A B$	$B B$
AA	q^{3}	($1-q$)	0	n_{00}	n_{01}	0
$A B$	$q^{2}(1-$	$q(1-q)$	$q(1-q)^{2}$	n_{10}	n_{11}	n_{12}
$B B$	0	$q(1-q)^{2}$	$(1-q)^{3}$	0	n_{21}	

2.4.3 ESTIMATING q FROM DATA ON RELATIVES:

For simplicity we consider just mother-baby pairs and assume HWE.

$$
\begin{aligned}
\ell= & \sum_{(i, j)} n_{i j} \log \operatorname{Pr}\left(G_{i}, G_{j}\right) \\
= & n_{00} \log \left(q^{3}\right)+n_{01} \log \left(q^{2}(1-q)\right)+n_{10} \log \left(q^{2}(1-q)\right) \\
& +n_{11} \log (q(1-q))+n_{12} \log \left(q(1-q)^{2}\right) \\
& \quad+n_{21} \log \left(q(1-q)^{2}\right)+n_{22} \log \left((1-q)^{3}\right) \\
= & \left(3 n_{00}+2\left(n_{01}+n_{10}\right)+n_{11}+n_{12}+n_{21}\right) \log q+ \\
& \left(3 n_{22}+2\left(n_{21}+n_{12}\right)+n_{11}+n_{10}+n_{01}\right) \log (1-q) \\
= & m_{A} \log q+m_{B} \log (1-q)
\end{aligned}
$$

The MLE of q is $m_{A} /\left(m_{A}+m_{B}\right)$, where $\left(m_{A}+m_{B}\right)=3 n-n_{11}$ and $m_{A}=\left(3 n_{00}+2\left(n_{01}+n_{10}\right)+n_{11}+n_{12}+n_{21}\right)$.

2.4.4 ALTERNATIVES TO THE MLE:

The MLE is "best", but there are simpler estimators that are not so bad.
(a) Use only founders (the moms):
estimate q by $\left(2 n_{A A}+n_{A B}\right) / 2 n$ where $n_{A A}$ is number of $A A$ moms, and $n_{A B}$ is number of $A B$ moms. $\left(n_{A A}=n_{00}+n_{01}\right)$.
(b) Use everyone, disregarding relationship:
estimate q by $\left(2 m_{A A}+m_{A B}\right) / 4 n$, where $m_{A A}$ is total number of $A A$ individuals, and $m_{A B}$ is total number of $A B$ individuals. ($m_{A A}=$ $\left.2 n_{00}+n_{01}+n_{10}\right)$.

These are both unbiased estimators, but asymptotically the MLE has smaller variance.

2.4.5 EFFECTS OF RELATEDNESS IN ESTIMATING q :

- Results due to Tim Thornton.
- COGA data set; ~ 1214 individuals, in 105 pedigrees, ~ 992 observed (1984 gene copies).
- For the naive estimators we count alleles.
- For independent alleles the variance is $\sim q(1-q) / m$. All these curves are very close to $q(1-q) / m$ for some m, and we can think of m as the "effective sample size".
(Larger variance \equiv smaller m)
- Naive estimator; For X: eff-m =375 (125 female, 125 male)

For autosomal; eff-m = 500 (250 people) (Factor of $1 / .75=1.33$)

- For BLUE (\sim MLE): For X: eff-m = 515 (approx) For autosomes: eff-m $=680$ (Naive: 500/1984 ≈ 0.25. BLUE 680/1984 ≈ 0.34)

2.5.1 SPECIFYING INHERITANCE:

- Segregation of genes is fully specified by meiosis indicators

$$
\begin{aligned}
S_{i} & =0 \text { if gene is parent's maternal gene } \\
& =1 \text { if gene is parent's paternal gene }
\end{aligned}
$$

where $i=1, \ldots, m$ indexes the meioses.

- Mendel's First Law is S_{i} are independent with

$$
\operatorname{Pr}\left(S_{i}=0\right)=\operatorname{Pr}\left(S_{i}=1\right)=\frac{1}{2} .
$$

- ibd state \mathbf{J} at a locus is a function of the $\left\{S_{i}\right\}$ at that locus.
- If $\left\{S_{i}\right\}$ are known, then we know which founder genomes (FGL) descend to each individual.

2.5.2 Example showing descent of FGL:

- Consider the following segregation pattern of genes:

- Label the founder genomes.
- Use the $\left\{S_{i}\right\}$ to trace descent of FGL.
- Same FGL implies ibd.
- Example: The final individual and his maternal grandfather share FGL 8 - not by direct descent, but because both receive DNA from the founder who carries FGL 8.

2.5.3 The general formula for data probabilities:

$$
\begin{aligned}
\operatorname{Pr}(\mathbf{Y}) & =\sum_{\mathbf{S}} \operatorname{Pr}(\mathbf{Y} \mid \mathbf{S}) \operatorname{Pr}(\mathbf{S}) \\
& =\sum_{\mathbf{S}} \operatorname{Pr}(\mathbf{Y} \mid \mathbf{J}(\mathbf{S})) \operatorname{Pr}(\mathbf{S}) \\
& =\sum_{\mathbf{J}} \operatorname{Pr}(\mathbf{Y} \mid \mathbf{J}) \operatorname{Pr}(\mathbf{J})
\end{aligned}
$$

$\operatorname{Pr}(\mathbf{Y} \mid \mathbf{J}(\mathbf{S}))$ is the sum over all possible assignments \mathcal{A} of allelic types to ibd gene-groups k of the product of allele frequencies $q_{a(k)}$ of assigned alleles $a(k)$:

$$
\operatorname{Pr}(\mathbf{Y} \mid \mathbf{J}(\mathbf{S}))=\sum_{\mathcal{A}} \prod_{k} q_{a(k)}
$$

- EXAMPLE: Mom-baby pairs: ibd state 121 3: (or equiv.)
- Data $A A, A B ; 1$ is $A, 2$ is $A, 3$ is B : $\operatorname{prob} q^{2}(1-q)$
- Data $A B, B B ; 1$ is $B, 2$ is $A, 3$ is B : prob $q(1-q)^{2}$
- Data $A B, A B ; 1$ is $A, 2$ is $B, 3$ is B : $\operatorname{prob} q(1-q)^{2}$

OR 1 is $B, 2$ is $A, 3$ is A : $\operatorname{prob}^{2}(1-q)$; sum $q(1-q)$.

2.5.4 EXAMPLE: DATA ON TWO INDIVIDUALS:

We know the relationship between two individuals, so can (we suppose) compute the probabilities $\Delta_{1}, \ldots, \Delta_{9}$ of the 9 ibd classes (groups of states). Suppose we observe the individuals to be $A A$ and $A C$.

$P(\mathrm{~J})$	J	$P(A A, A C \mid \mathbf{J})$
\triangle_{1}	1111	0
Δ_{2}	1112	$q_{A} q_{C}$
\triangle_{3}	1211	0
\triangle_{4}	1122	0
\triangle_{5}	1123	$q_{A}\left(2 q_{A} q_{C}\right)$
\triangle_{6}	1233	0
Δ_{7}	1212	0
Δ_{8}	1213	$q_{A} q_{A} q_{C}$
Δ_{9}	1234	$q_{A}^{2} \cdot\left(2 q_{A} q_{C}\right)$

Total probability of observing $(A A, A C)$ is
$P(A A, A C)=\Delta_{2} q_{A} q_{C}+\Delta_{5} 2 q_{A}^{2} q_{C}+\Delta_{8} q_{A}^{2} q_{C}+\Delta_{9} 2 q_{A}^{3} q_{C}$

2.5.5 Back to JV pedigree example :

- Given the particular descent pattern S, consider the possible allelic types of these genes given the genotypes of 5 individuals shown:

- FGL graph or ibd graph or descent graph (Lange):
(b)

- $\mathrm{prob}=\left(2 q_{A} q_{C}\right) \cdot\left(q_{B} q_{C}^{2} q_{D}\right)$

- There are always 2, 1, or 0 possible assignments of allelic types to FGL nodes that are consistent with observed (no-error) genotypes.

Blank slide:

