4.3.1 Baum algorithm for total probability:

- For data observations $\mathbf{Y}=\left(Y_{\bullet, j}, j=1, \ldots, \ell\right)$, we want to compute $\operatorname{Pr}(\mathbf{Y})$. Due to the first-order Markov dependence of the $S_{\cdot, j}$, we have

$$
\begin{aligned}
\operatorname{Pr}(\mathbf{Y}) & =\sum_{\mathbf{S}} \operatorname{Pr}(\mathbf{S}, \mathbf{Y})=\sum_{\mathbf{S}} \operatorname{Pr}(\mathbf{Y} \mid \mathbf{S}) \operatorname{Pr}(\mathbf{S}) \\
& =\sum_{\mathbf{S}}\left(\operatorname{Pr}\left(S_{\bullet, 1}\right) \prod_{j=2}^{\ell} \operatorname{Pr}\left(S_{\bullet, j} \mid S_{\bullet, j-1}\right) \prod_{j=1}^{\ell} \operatorname{Pr}\left(Y_{\bullet, j} \mid S_{\bullet, j}\right)\right) .
\end{aligned}
$$

- Let $Y^{*(j)}=\left(Y_{\bullet, 1}, \ldots, Y_{\bullet}, j\right)$, the data along the chromosome up to and including locus j. Note $\mathbf{Y}=Y^{*(\ell)}$.

4.3.2 The forwards Baum algorithm:

- Now define the joint probability
$R_{j}^{*}(s)=\operatorname{Pr}\left(Y_{\bullet, k}, k=1, \ldots, j-1, S_{\bullet, j}=s\right)=\operatorname{Pr}\left(Y^{*(j-1)}, S_{\bullet, j}=s\right)$ with $R_{1}^{*}(s)=\operatorname{Pr}\left(S_{\bullet, 1}=s\right)$. Then
$R_{j+1}^{*}(s)=\sum_{s^{*}}\left[\operatorname{Pr}\left(S_{\bullet, j+1}=s \mid S_{\bullet, j}=s^{*}\right) \operatorname{Pr}\left(Y_{\bullet, j} \mid S_{\bullet, j}=s^{*}\right) R_{j}^{*}\left(s^{*}\right)\right]$
for $j=1,2, \ldots, \ell-1$, with

$$
\operatorname{Pr}(\mathbf{Y})=\sum_{s^{*}} \operatorname{Pr}\left(Y_{\bullet, \ell} \mid S_{\bullet, \ell}=s^{*}\right) R_{\ell}^{*}\left(s^{*}\right)
$$

- That is, we can compute the likelihood $\operatorname{Pr}(\mathbf{Y})$.

4.3.3 The Lander-Green algorithm: Lander and Green (1987):

- The Genehunter algorithm is the forwards algorithm of 4.3.2.
- If there are m meioses on the pedigree, then $S_{\cdot, j}$ can take 2^{m} values. Computations involve, for each locus, transitions from the 2^{m} values of $S_{\bullet, j}$ to the 2^{m} values of $S_{\bullet, j+1}$.
- Overall computation is order $\ell 2^{2 m}$.

For Genehunter, for a pedigree with n individuals, f of whom are founders, $m=2(n-f)-f=2 n-3 f$, and $m \leq 16$.

- We can compute $\operatorname{Pr}\left(Y_{\bullet, j} \mid S_{\bullet, j}\right)$ for genetic marker data (2.4.8).

Also for data at a trait locus, where we observe only phenotypes not genotypes, although this is (a bit) harder.

- Even if computation of $\operatorname{Pr}\left(Y_{\bullet, j} \mid S_{\bullet, j}\right)$ is easy for given $S_{\bullet, j}$, this must be done for each locus and for each value of $S_{\bullet, j}$.
- The exact Lander-Green computation is limited to small pedigrees. Although better algorithms using independence of meioses give us a factored HMM which means we can get an algorithm of order $m \ell 2^{m}$ but is is still exponential in pedigree size. (MERLIN: $m \leq 27$.)

4.3.4 The linkage map-specific lod score:

- We hypothesize the trait locus at some position d on the chromosome, measured in genetic distance (cM):

$$
L(d)=\operatorname{Pr}(\mathbf{Y} \mid \text { trait locus is at } d)
$$

$d=\infty$ corresponds to $\rho=\frac{1}{2}$, or absence of linkage.

- For Genehunter, distances are relative to first marker at $d=0$.
- The map-specific lod score is $\log _{10}(L(d) / L(\infty))$, measured in genetic distance.
- The location score is defined as $2 \log _{e}(L(d) / L(\infty))$. Under appropriate conditions, this statistic has approximately a chi-squared distribution in the absence of linkage.
- Software for map-specific lod scores is implemented in Genehunter, Allegro, and MERLIN (recommended for small pedigrees).
(Monte Carlo and/or MCMC versions are implemented in SIMWALK2 and in MORGAN.)

4.4.1 The backwards Baum algorithm and $\operatorname{Pr}\left(S_{\bullet, j} \mid \mathbf{Y}\right)$:

- Now also define

$$
\begin{aligned}
R_{j}^{\dagger}(s) & =\operatorname{Pr}\left(Y_{k}, k=j, \ldots, \ell \mid S_{\bullet, j}=s\right)=\operatorname{Pr}\left(Y^{\dagger(j)} \mid S_{\bullet, j}=s\right) \\
\bullet R_{j}^{\dagger}(s) & =\operatorname{Pr}\left(Y_{k}, k=j, \ldots, \ell \mid S_{\bullet, j}=s\right) \\
& =\sum_{s^{*}} \operatorname{Pr}\left(Y_{k}, k=j, \ldots, \ell, S_{\bullet, j+1}=s^{*} \mid S_{\bullet, j}=s\right) \\
& =\operatorname{Pr}\left(Y_{j} \mid S_{\bullet, j}=s\right) \sum_{s^{*}} R_{j+1}^{\dagger}\left(s^{*}\right) \operatorname{Pr}\left(S_{\bullet, j+1}=s^{*} \mid S_{\bullet, j}=s\right)
\end{aligned}
$$

- Then $\operatorname{Pr}\left(S_{\bullet, j}=s \mid \mathbf{Y}\right)=\frac{\operatorname{Pr}\left(\mathbf{Y}, S_{\bullet, j}=s\right)}{\operatorname{Pr}(\mathbf{Y})}=\frac{R_{j}^{*}(s) R_{j}^{\dagger}(s)}{\operatorname{Pr}(\mathbf{Y})}$

4.4.2 Expected recombination counts: implementing EM:

- Recall from 4.2.3 we want

$$
\tilde{X}_{j-1}=\mathbf{E}\left(X_{j-1} \mid \mathbf{Y}\right)=\sum_{i} \mathbf{E}\left(\left|S_{i, j}-S_{i, j-1}\right| \mid \mathbf{Y}\right)
$$

- Note that

$$
\begin{aligned}
& \operatorname{Pr}\left(S_{\bullet, j-1}, S_{\bullet}, j \mid \mathbf{Y}\right)=\operatorname{Pr}\left(S_{\bullet, j-1}, S_{\bullet}, j, \mathbf{Y}\right) / \operatorname{Pr}(\mathbf{Y}) \text { and } \\
& \operatorname{Pr}\left(S_{\bullet, j-1}, S_{\bullet, j}, \mathbf{Y}\right)=\operatorname{Pr}\left(Y^{*(j-2)}, S_{\bullet, j-1}\right) \operatorname{Pr}\left(Y_{\bullet, j-1} \mid S_{\bullet, j-1}\right) \\
& \operatorname{Pr}\left(S_{\bullet}, j \mid S_{\bullet, j-1}\right) P\left(Y^{\dagger(j)} \mid S_{\bullet, j}\right)
\end{aligned}
$$

- The first term is just the $R_{j-1}^{*}\left(S_{\bullet, j-1}\right)$ we had in the forwards Baum algorithm, the second is just a single-locus probability of data given inheritance, the third is just the recombination/non-recombination transitions in I_{j-1} interval, and the final is $R_{j}^{\dagger}\left(S_{\bullet, j}\right)$ from the backwards version of the Baum algorithm.
- On small pedigrees, the EM map estimation can be implemented.

4.4.3 The joint pattern of S over loci:

- 4.4.1 gives us probabilities of $S_{\bullet, j}$ given \mathbf{Y} and hence probabilities of i ibd at each locus j. Each $S_{\bullet, j}$ can take 2^{m} values.
- 4.4.2 gives us pairwise probabilities of ($S_{\bullet, j-1}, S_{\bullet, j}$), and hence expected recombination counts, given Y. Each ($S_{\bullet, j-1}, S_{\bullet, j}$) can take $2^{m} \times 2^{m}=4^{m}$ values.
- But suppose we want S jointly over all the loci; this is infeasible to compute eactly, even on small pedigrees. S can take $2^{\text {m } \ell}$ values there are too many possible \mathbf{S}.

4.4.4 Monte Carlo realization of S given Y :

- Compute $R_{j}^{*}(s)=\operatorname{Pr}\left(Y^{*(j)}, S_{\bullet, j}=s\right), j=1,2,3, \ldots \ell$ as before.
- First, $S_{\bullet, \ell}$ is sampled from $\propto \operatorname{Pr}\left(\mathbf{Y}, S_{\bullet, \ell}\right)=\operatorname{Pr}\left(Y_{\bullet}, \ell S_{\bullet, l}\right) R_{\ell}^{*}\left(S_{\bullet, \ell}\right)$. (All sampling probabilities will be normalized over $2^{m} s$-values.)
- Then, given a realization of ($\left.S_{\bullet, j+1}=s^{*}, S_{\bullet, j+2}, \ldots, S_{\bullet, \ell}\right)$,
$\operatorname{Pr}\left(S_{\bullet, j}=s \mid S_{\bullet, j+1}=s^{*}, S_{\bullet, j+2}, \ldots, S_{\bullet, \ell}, \mathbf{Y}\right)=$ $\operatorname{Pr}\left(S_{\bullet}, j=s \mid S_{\bullet}, j+1=s^{*}, Y^{*(j)}\right) \propto \operatorname{Pr}\left(S_{\bullet}, j+1=s^{*} \mid S_{\bullet, j}=s\right)$

$$
R_{j}^{*}(s) \operatorname{Pr}\left(Y_{\bullet, j} \mid S_{\bullet, j}\right)
$$

- Normalizing these probabilities, we realize each $S_{\bullet, j-1}$, for $j=$ $\ell, \ell-1, \ldots, 4,3,2$ in turn, providing an overall realization $\mathrm{S}=$ ($S_{\bullet, 1}, \ldots, S_{\bullet, \ell}$) from $\operatorname{Pr}(\mathbf{S} \mid \mathbf{Y})$.

4.4.5 Monte Carlo estimates of ibd and genetic maps:

- Instead of computing $\operatorname{Pr}\left(S_{\bullet, j} \mid \mathbf{Y}\right)$ we can sample it, and hence get estimates of $i b d$ patterns at each locus j.
- We can make estimates of ibd jointly over loci - for example, the probability that an individual is autoygous over a set of loci, not just the separate probability of each.
- Intead of computing

$$
\tilde{X}_{j-1}=\mathbf{E}\left(X_{j-1} \mid \mathbf{Y}\right)=\sum_{i} \mathbf{E}\left(\left|S_{i, j}-S_{i, j-1}\right| \mid \mathbf{Y}\right)
$$

we can count recombination events in N realized S for all map intervals and each gender.

- Hence we can do Monte Carlo EM, replacing the E-step by these Monte Carlo estimates at each stage.
- Generally, Monte Carlo EM works as well as regular EM, at least for nitial steps. Initially, the Monte Carlo sample size N need not be large, although for the final EM steps it should be increased.

Photos from Qian:

- Left: Above: Showing forwards (R^{*}) and backwards (R^{\dagger}) components of the HMM Ikelihood computation. Below: a map-specific lod score computed at locations along a chromosome.
- Right: The grid of $2^{m \ell}$ components $S_{, j}$ of \mathbf{S}, showing the Markov dependence across loci j, and the computational complexity of HMM computations.

