Chapter 4: Multiple Marker Loci

4.1 Markov dependence of inheritance vectors 4-1
4.2 Estimating genetic maps 4-6
4.3 HMM computations across chromosomes 4-10
4.4 The probabilities of latent ibd given \mathbf{Y} 4-14
4.5 Computations for big pedigrees 4-19

4.1.1 MULTILOCUS INHERITANCE SPECIFICATION:

- Assume that ℓ loci are ordered $1, \ldots, \ell$ along the chromosome. Let the intervals between successive loci be $I_{1}, \ldots, I_{\ell-1}$.
- $S_{i, j}=0$ or 1 specifies inheritance at locus j in meosis i.
ρ_{j} is probability of recombination between locus j and locus $j+1$.
- $S_{\bullet, j}=\left\{S_{i, j}, i=1, \ldots, m\right\}$ is the inheritance vector at locus j. $S_{i, \bullet}=\left\{S_{i, j}, j=1, \ldots, \ell\right\}$ is vector specifying meiosis or gamete i.
- Let $T_{i, j}=1$ if a gamete i is recombinant on interval I_{j}, and $T_{i, j}=0$ otherwise $(j=1, \ldots, \ell-1)$. Then, in meiosis i,

$$
\begin{aligned}
T_{i, j} & =1 \text { if } S_{i, j} \neq S_{i, j+1}, \quad \text { and } \\
T_{i, j} & =0 \text { if } S_{i, j}=S_{i, j+1}, j=1, \ldots, \ell-1 . \\
\operatorname{Pr}\left(T_{i, j}=1\right) & =\operatorname{Pr}\left(S_{i, j} \neq S_{i, j+1}\right)=\rho_{j} .
\end{aligned}
$$

4.1.2 MULTILOCUS INHERITANCE; NO INTERFENCE:

- A model for $S_{i, .}=\left\{S_{i, j}, j=1, \ldots, \ell\right\}$ is equivalent to a model for ($T_{i, 1}, \ldots, T_{i, \ell-1}$); for example, some genetic interference model.
- The simplest models for meiosis assume no interference: that is, that the $T_{i, j}$ are independent, for all i and j.
- Then the $S_{i, j}$ are first-order Markov over loci j, with meioses i being independent.
- One way to express this is that

$$
\begin{aligned}
\operatorname{Pr}\left(S_{i, j} \mid S_{i, 1}, \ldots, S_{i, j-1}\right) & =\operatorname{Pr}\left(S_{i, j} \mid S_{i, j-1}\right) \\
\text { so that } \quad \operatorname{Pr}\left(S_{i, \bullet}\right) & =\operatorname{Pr}\left(S_{i, 1}\right) \prod_{j=2}^{\ell} \operatorname{Pr}\left(S_{i, j} \mid S_{i, j-1}\right)
\end{aligned}
$$

- Combining the meioses

$$
\operatorname{Pr}(\mathbf{S})=\operatorname{Pr}\left(S_{\bullet, 1}\right) \prod_{j=2}^{\ell} \operatorname{Pr}\left(S_{\bullet, j} \mid S_{\bullet, j-1}\right)
$$

where $\mathbf{S}=\left\{S_{i, j} ; i=1, \ldots, m, j=1, \ldots, \ell\right\}$.

4.1.3 CONDITIONAL INDEPENDENCE OF S:

- The Markov dependence may also be expressed as:

Given $S_{i, j}, S_{i, j-1}$ is independent of $S_{i, j+1}$.

- Another useful way is to consider the probability of any given indicator $S_{i, j}$ conditional on all the others, $\mathbf{S}_{-(i, j)}=\left\{S_{k, l} ;(k, l) \neq(i, j)\right\}$.
- Then $S_{i, j}$ depends only on the indicators for the same meiosis and the two neighboring loci. For $s=0,1$,

$$
\begin{array}{r}
\operatorname{Pr}\left(S_{i, j}=s \mid \mathbf{S}_{-(i, j)}\right)=\operatorname{Pr}\left(S_{i, j}=s \mid S_{i, j+1}, S_{i, j-1}\right) \\
\propto \quad \rho_{j-1}^{\left|s-S_{i, j-1}\right|}\left(1-\rho_{j-1}\right)^{1-\left|s-S_{i, j-1}\right|} \rho_{j}^{\left|s-S_{i, j+1}\right|}\left(1-\rho_{j}\right)^{1-\left|s-S_{i, j+1}\right|}
\end{array}
$$

where $\rho_{j}=\operatorname{Pr}\left(S_{i, j} \neq S_{i, j+1}\right)$ is the recombination frequency in I_{j}.

- Note that the equation just indicates the recombination/non- recombination events in intervals I_{j-1} and I_{j}, implied by the three indicators ($S_{i, j-1}, S_{i, j}=s, S_{i, j+1}$).

4.1.4 THE LOCUS j DATA PROBABILITIRS:

Recall in slides 2.4.6 to 2.4.10, we computed the single-locus computation od observed data on a set of individuals, in terms either of ibd states \mathbf{J}, or using the inheritance \mathbf{S}.

$$
\begin{aligned}
\operatorname{Pr}(\mathbf{Y}) & =\sum_{\mathbf{S}} \operatorname{Pr}(\mathbf{Y} \mid \mathbf{S}) \operatorname{Pr}(\mathbf{S})=\sum_{\mathbf{S}} \operatorname{Pr}(\mathbf{Y} \mid \mathbf{J}(\mathbf{S})) \operatorname{Pr}(\mathbf{S}) \\
& =\sum_{\mathbf{J}} \operatorname{Pr}(\mathbf{Y} \mid \mathbf{J}) \operatorname{Pr}(\mathbf{J}) .
\end{aligned}
$$

- In examples we used the ibd states, because there are fewer ibd patterns \mathbf{J} than values of \mathbf{S}. For example, just (k_{0}, k_{1}, k_{2}) for two non-inbred individuals, regardless of what pedigree gave rise to them.
- However, although the component $S_{i, j}$ are Markov over loci j, gene ibd patterns are not. Different values of $S_{0, j}$ may give rise to the same ibd pattern. Grouping the states of a Markov chain does not, in general, produce a Markov chain. So to use the Markov dependence, we have to use S .
- Now let $Y_{\bullet, j}$ denote all the data corresponding to locus j.

4.1.5 THE HMM ACROSS LOCI FOR PEDIGREE DATA:

- As before $S_{\bullet, j}$ determines the ibd at locus j, and hence $\operatorname{Pr}\left(Y_{\bullet, j} \mid S_{\bullet, j}\right)$.

$$
\text { Then } \operatorname{Pr}(\mathbf{Y} \mid \mathbf{S})=\prod_{j=1}^{\ell} \operatorname{Pr}\left(Y_{\bullet, j} \mid S_{\bullet, j}\right) \text {. }
$$

- Note that, given $S_{\bullet, j}$,
$Y^{*(j-1)}, Y_{\bullet, j}$, and $Y^{\dagger(j+1)}$ are mutually independent.
Also, given $S_{\bullet, j}, \quad Y^{*(j-1)}, Y_{\bullet, j}$, and $S_{\bullet, j+1}$ are independent.
Also, given $S_{\bullet}, j, \quad Y^{\dagger(j+1)}, Y_{\bullet, j}$, and $S_{\bullet, j-1}$ are independent.

4.2.1 Counting recombinants if S is observed:

- If S is observed, we can count recombinants.

Let $X_{m, j-1}=\sum_{i \text { male }}\left|S_{i, j}-S_{i, j-1}\right|$ be the number of recombinations in interval I_{j-1} in male meioses, and M_{m} is the total number of male meioses scored in the pedigree. Similarly for female meioses.

- \mathbf{Y} is irrelevant and the log-likelihood is

$$
\log \operatorname{Pr}(\mathbf{S})=\log \left(\operatorname{Pr}\left(S_{\bullet, 1}\right)\right)+\sum_{j=2}^{\ell} \log \left(\operatorname{Pr}\left(S_{\bullet}, j \mid S_{\bullet, j-1}\right)\right)
$$

- Recombination parameters $\rho_{m, j-1}$ and $\rho_{f, j-1}$ enter only in

$$
\begin{aligned}
& \quad \log \left(\operatorname{Pr}\left(S_{\bullet, j} \mid S_{\bullet, j-1}\right)\right)= \\
& X_{m, j-1} \log \left(\rho_{m, j-1}\right)+\left(M_{m}-X_{m, j-1}\right) \log \left(1-\rho_{m, j-1}\right) \\
& +X_{f, j-1} \log \left(\rho_{f, j-1}\right) \quad+\left(M_{f}-X_{f, j-1}\right) \log \left(1-\rho_{f, j-1}\right) \\
& \\
& -\widehat{\rho_{m, j-1}}=X_{m, j-1} / M_{m}, \text { and } \widehat{\rho_{f, j-1}}=X_{f, j-1} / M_{f},
\end{aligned}
$$

4.2.2 Given S: Ordering loci and testing for interference:

- Suppose we have three loci $j=1,2,3$ at which $S_{\bullet, j}$ is observed. Assume recombination rates are the same for male and female meioses.
- We can choose the order that minimizes "double recombinants":
i.e. meioses i in which $S_{i, \bullet}=(0,1,0)$ or $(1,0,1)$ or $T_{i}=(1,1)$.
- More generally, for ℓ loci known to be linked, we can seek the ordering of columns j of S that minimizes recombination events.
- For any two locus intervals, I_{j} and I_{k} say, we can test for interference: For each meiosis $i,\left(T_{i, j}, T_{i, k}\right)=(0,0),(1,0),(0,1)$ or $(1,1)$.
$\operatorname{Pr}\left(T_{i, j}=1\right)=\rho_{j}$, and $\operatorname{Pr}\left(T_{i, k}=1\right)=\rho_{k}$.
- In the absence of interference $T_{i, j}$ and $T_{i, k}$ are independent (And, as always, the meioses i are independent.)
So to test for interference between I_{j} and I_{k}, we could just use a 2×2 table for the counts of (T_{j}, T_{k}) over meioses.
- More generally (beyond the scope of this class!) we could fit a map function to the patterns of recombination we see.

4.2.3 S unobserved: An EM algorith for genetic maps:

- $\rho_{m, j-1}$ and $\rho_{f, j-1}$ occur only in the term $\log \left(\operatorname{Pr}\left(S_{\bullet, j} \mid S_{\bullet, j-1}\right)\right.$ of the complete-data log-likelihood $\log \operatorname{Pr}(\mathbf{S}, \mathbf{Y})=$
$\log \left(\operatorname{Pr}\left(S_{\bullet, 1}\right)\right)+\sum_{j=2}^{\ell} \log \left(\operatorname{Pr}\left(S_{\bullet, j} \mid S_{\bullet, j-1}\right)\right)+\sum_{j=1}^{\ell} \log \left(\operatorname{Pr}\left(Y_{\bullet, j} \mid S_{\bullet, j}\right)\right)$
- E-step: The expected complete-data log-likelihood requires only computation of $\mathbf{E}\left(\log \left(\operatorname{Pr}\left(S_{\bullet, j} \mid S_{\bullet, j-1}\right)\right) \mid \mathbf{Y}\right)$ or

$$
\tilde{X}_{m, j-1}=\mathbf{E}\left(X_{m, j-1} \mid \mathbf{Y}\right)=\sum_{i \text { male }} \mathbf{E}\left(\left|S_{i, j}-S_{i, j-1}\right| \mid \mathbf{Y}\right)
$$

and similarly $\tilde{X}_{f, j-1}$.

- M-step: The new estimate of $\rho_{m, j-1}$ is $\tilde{X}_{m, j-1} / M_{m}$, and similarly for all intervals $j=2,3, \ldots, \ell$ and for both the male and female meioses.
- The EM algorithm is thus readily implemented to provide estimates of recombination frequencies for all intervals and for both sexes, provided E-step can be done.

blank slide:

