
Chapter 4 - 0

Chapter 4: Multiple Marker Loci

4.1 Markov dependence of inheritance vectors 4-1
4.2 Estimating genetic maps 4-6
4.3 HMM computations across chromosomes 4-10
4.4 The probabilities of latent ibd given Y 4-14
4.5 Computations for big pedigrees 4-19

Dr Elizabeth A Thompson Stat 550: StatGen I: 2013

Chapter 4 - 1

4.1.1 MULTILOCUS INHERITANCE SPECIFICATION:

Si,1 Si,2Si,3 · · · · · · Si,j−1 Si,j Si,j+1· · · Si,�

ρ1 ρ2 ρj−1 ρj

Ti,1 Ti,2 Ti,j−1 Ti,j

• Assume that � loci are ordered 1, . . . , � along the chromosome. Let
the intervals between successive loci be I1, . . . , I�−1.

• Si,j = 0 or 1 specifies inheritance at locus j in meosis i.
ρj is probability of recombination between locus j and locus j +1.

• S•,j = {Si,j, i = 1, ..., m} is the inheritance vector at locus j.
Si,• = {Si,j, j = 1, ..., �} is vector specifying meiosis or gamete i.

• Let Ti,j = 1 if a gamete i is recombinant on interval Ij,
and Ti,j = 0 otherwise (j = 1, . . . , �− 1). Then, in meiosis i,

Ti,j = 1 if Si,j �= Si,j+1, and
Ti,j = 0 if Si,j = Si,j+1, j = 1, . . . , �− 1.

Pr(Ti,j = 1) = Pr(Si,j �= Si,j+1) = ρj.
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4.1.2 MULTILOCUS INHERITANCE; NO INTERFENCE:

• A model for Si,• = {Si,j, j = 1, ..., �} is equivalent to a model for
(Ti,1, . . . , Ti,�−1); for example, some genetic interference model.

• The simplest models for meiosis assume no interference:
that is, that the Ti,j are independent, for all i and j.

• Then the Si,j are first-order Markov over loci j, with meioses i being
independent.

• One way to express this is that

Pr(Si,j | Si,1, ..., Si,j−1) = Pr(Si,j | Si,j−1)

so that Pr(Si,•) = Pr(Si,1)
��

j=2

Pr(Si,j | Si,j−1)

• Combining the meioses

Pr(S) = Pr(S•,1)
��

j=2

Pr(S•,j | S•,j−1)

where S = {Si,j; i = 1, ..., m, j = 1, ..., �}.
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4.1.3 CONDITIONAL INDEPENDENCE OF S:

• The Markov dependence may also be expressed as:
Given Si,j, Si,j−1 is independent of Si,j+1.

• Another useful way is to consider the probability of any given indica-
tor Si,j conditional on all the others, S−(i,j) = {Sk,l; (k, l) �= (i, j)}.

• Then Si,j depends only on the indicators for the same meiosis and
the two neighboring loci. For s = 0,1,

Pr(Si,j = s | S−(i,j)) = Pr(Si,j = s | Si,j+1, Si,j−1)

∝ ρ
|s−Si,j−1|
j−1 (1 − ρj−1)

1−|s−Si,j−1| ρ|s−Si,j+1|
j (1 − ρj)

1−|s−Si,j+1|

where ρj = Pr(Si,j �= Si,j+1) is the recombination frequency in Ij.

• Note that the equation just indicates the recombination/non- recom-
bination events in intervals Ij−1 and Ij, implied by the three indicators
(Si,j−1, Si,j = s, Si,j+1).
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4.1.4 THE LOCUS j DATA PROBABILITIRS:

Recall in slides 2.4.6 to 2.4.10, we computed the single-locus com-
putation od observed data on a set of individuals, in terms either of
ibd states J, or using the inheritance S.

Pr(Y) =
�

S

Pr(Y | S) Pr(S) =
�

S

Pr(Y | J(S)) Pr(S)

=
�

J

Pr(Y | J) Pr(J).

• In examples we used the ibd states, because there are fewer ibd
patterns J than values of S. For example, just (k0, k1, k2) for two
non-inbred individuals, regardless of what pedigree gave rise to them.

• However, although the component Si,j are Markov over loci j, gene
ibd patterns are not. Different values of S•,j may give rise to the
same ibd pattern. Grouping the states of a Markov chain does not, in
general, produce a Markov chain. So to use the Markov dependence,
we have to use S.

• Now let Y•,j denote all the data corresponding to locus j.
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4.1.5 THE HMM ACROSS LOCI FOR PEDIGREE DATA:
S•,1 S•,j−1 S•,j S•,j+1 S•,�

Y•,1 Y•,j−1 Y•,j Y•,j+1 Y•,�

Y ∗(j−1) Y †(j+1)

Pr(S) = Pr(S•,1)
l�

j=2

Pr(S•,j | S•,j−1)

• As before S•,j determines the ibd at locus j, and hence Pr(Y•,j|S•,j).

Then Pr(Y | S) =
��

j=1

Pr(Y•,j | S•,j).

• Note that, given S•,j,
Y ∗(j−1), Y•,j, and Y †(j+1) are mutually independent.

Also, given S•,j, Y ∗(j−1), Y•,j, and S•,j+1 are independent.
Also, given S•,j, Y †(j+1), Y•,j, and S•,j−1 are independent.
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4.2.1 Counting recombinants if S is observed:

• If S is observed, we can count recombinants.
Let Xm,j−1 =

�
i male |Si,j − Si,j−1| be the number of recombina-

tions in interval Ij−1 in male meioses, and Mm is the total number of
male meioses scored in the pedigree. Similarly for female meioses.

• Y is irrelevant and the log-likelihood is

logPr(S) = log(Pr(S•,1)) +
��

j=2

log(Pr(S•,j | S•,j−1))

• Recombination parameters ρm,j−1 and ρf,j−1 enter only in

log(Pr(S•,j|S•,j−1)) =
Xm,j−1 log(ρm,j−1) +(Mm − Xm,j−1) log(1 − ρm,j−1)

+Xf,j−1 log(ρf,j−1) +(Mf − Xf,j−1) log(1 − ρf,j−1)

• �ρm,j−1 = Xm,j−1/Mm, and �ρf,j−1 = Xf,j−1/Mf ,
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4.2.2 Given S: Ordering loci and testing for interference:

• Suppose we have three loci j = 1,2,3 at which S•,j is observed.
Assume recombination rates are the same for male and female meioses.

• We can choose the order that minimizes “double recombinants”:
i.e. meioses i in which Si,• = (0,1,0) or (1,0,1) or Ti = (1,1).

• More generally, for � loci known to be linked, we can seek the or-
dering of columns j of S that minimizes recombination events.

• For any two locus intervals, Ij and Ik say, we can test for interfer-
ence: For each meiosis i, (Ti,j, Ti,k) = (0,0), (1,0), (0,1) or (1,1).
Pr(Ti,j = 1) = ρj, and Pr(Ti,k = 1) = ρk.

• In the absence of interference Ti,j and Ti,k are independent
(And, as always, the meioses i are independent.)
So to test for interference between Ij and Ik, we could just use a
2 × 2 table for the counts of (Tj, Tk) over meioses.

• More generally (beyond the scope of this class!) we could fit a map
function to the patterns of recombination we see.
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4.2.3 S unobserved: An EM algorith for genetic maps:

• ρm,j−1 and ρf,j−1 occur only in the term log(Pr(S•,j | S•,j−1) of
the complete-data log-likelihood logPr(S,Y) =

log(Pr(S•,1))+
��

j=2

log(Pr(S•,j | S•,j−1))+
��

j=1

log(Pr(Y•,j | S•,j))

• E-step: The expected complete-data log-likelihood requires only
computation of E(log(Pr(S•,j | S•,j−1)) | Y) or

X̃m,j−1 = E(Xm,j−1 | Y) =
�

i male

E(|Si,j − Si,j−1| | Y)

and similarly X̃f,j−1.

• M-step: The new estimate of ρm,j−1 is X̃m,j−1/Mm, and similarly
for all intervals j = 2,3, . . . , � and for both the male and female
meioses.

• The EM algorithm is thus readily implemented to provide estimates
of recombination frequencies for all intervals and for both sexes, pro-
vided E-step can be done.
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