Chapter 3: Genes on chromosomes

Linkage, recombination, and genetic maps	3-1
Likelihoods and linkage lod scores	3-7
Linkage designs, power, sample size and information	3-14
Two-locus kinship and <i>ibd</i>	3-??
<i>ibd</i> and linkage lod scores	3-??
	Likelihoods and linkage lod scores Linkage designs, power, sample size and information Two-locus kinship and <i>ibd</i>

Dr Elizabeth A Thompson

Stat 550: StatGen I: 2013

Chapter 3 - 1

3.1.1 MEIOSIS INDICATORS AT MULTIPLE LOCI :

• Segregation of DNA at a locus j is fully specified by *meiosis indicators*

 $S_{i,j} = 0$ if DNA copied at locus j is parent's maternal DNA

= 1 if DNA copied at locus *j* is parent's paternal DNA

where i = 1, ..., m indexes the meioses.

• Mendel's First Law: $S_{i,j}$ are independent over *i* with

$$\Pr(S_{i,j} = 0) = \Pr(S_{i,j} = 1) = \frac{1}{2}.$$

- $S_{i,j}$ are independent for loci j on different chromosome pairs $S_{i,j}$ are dependent among loci j on the same chromosome pair
- The vector $S_{\bullet,j} = \{S_{i,j}, i = 1, ..., m\}$ is known as the inheritance vector at that locus.

ibd at locus j is a function of the inheritance vector $S_{\bullet,j}$.

3.1.2 RECOMBINATION BETWEEN TWO LOCI:

• Recall there is recombination if the genes at the two loci j and l come from different parental chromosomes (different grandparents).

 \bullet For two given loci (l and j) the recombination frequency ρ between them is

$$\rho = \Pr(S_{i,l} \neq S_{i,j}) \text{ for each } i, \quad 0 \le \rho \le \frac{1}{2}.$$

• The pairwise distribution of $(S_{i,j}, S_{i,l})$ is determined by ρ .

• For loci that are close together on a chromosome, ρ is close to 0. For independently segregating loci, $\rho = \frac{1}{2}$.

$S_{i,l}$	S_{1}		
2	0	1	
0	$(1 - \rho)/2$	ho/2	1/2 1/2
1	ho/2	(1- ho)/2	1/2
	1/2	1/2	1

• In practice, recombination frequencies vary among meioses, a major factor in this variation being the sex of the parent. Computationally, this can be incorporated.

3.1.3 MULTILOCUS RECOMBINATION: NO INTERFERENCE:

• $S_{i,j}$ specifies inheritance at locus j in meosis i. ρ_j is probability of recombination between locus j and locus j + 1. $T_{i,j}$ is indicator of recombination between locus i and locus i + 1.

 $T_{i,j}$ is indicator of recombination between locus j and locus j + 1 in meiosis i.

- $\operatorname{Pr}(T_{i,j} = 1) = \operatorname{Pr}(S_{i,j} \neq S_{i,j+1}) = \rho_j.$
- Assume all the $T_{i,j}$ are independent. Then $S_{i,j}$ are Markov over jGiven $S_{i,j}$, $S_{i,j-1}$ is independent of $S_{i,j+1}$.
- Recombination probabilities are not additive. $(\rho_{1:3} \neq \rho_1 + \rho_2)$ For example: $\rho_{1:3} = \Pr(S_{i,1} \neq S_{i,3}) = \rho_1(1 - \rho_2) + \rho_2(1 - \rho_1)$. For example: if $\rho_1 = \rho_2 = 0.1$ then $\rho_{1:3} = 0.18$ (see lab 3).

3.1.4 GENETIC DISTANCE AND THE CROSSOVER PROCESS:

• Between two loci, the genetic distance d in Morgans is the expected number of crossovers between the loci on a given gamete.

• Regardless of the crossover process (i.e. regardless of dependence in number and locations of crossovers), genetic distance is always additive, since expectations are additive.

• Usually we measure genetic distance in centiMorgans, because a Morgan can be a whole chromosome. 100cM = 1 Morgan.

• Genetic distance has little to do with physical distance; but $1 \text{cM} \approx 10^6$ bp is a very useful overall rule.

• In a given meiosis, between two loci, recall there is recombination, if, in the offspring gamete, there is an odd number of crossovers between the loci.

• The recombination probability, $\rho(d)$, as a function of d is the *map function*.

Dr Elizabeth A Thompson	Stat 550: StatGen I: 2013

Chapter 3 - 5

3.1.5 THE HALDANE MAP FUNCTION:

• In the model of Haldane (1919), crossovers are assumed to occur as a Poisson process, rate 1 per Morgan (by defn.). The number of crossovers C(d) in genetic distance d is Poisson with mean d.

• This is a model of no genetic interference. The numbers of crossovers in disjoint intervals are independent, and, conditionally on the number occurring, their locations are uniformly and independently distributed.

• Under Haldane's model, $\rho(d)$ is the probability that a Poisson random variable with mean d is odd:

$$\rho(d) = \sum_{k \text{ odd}} e^{-d} \frac{d^k}{k!} = \frac{1}{2} e^{-d} \sum_{k=0}^{\infty} \left(\frac{d^k}{k!} - \frac{(-d)^k}{k!} \right)$$
$$= \frac{1}{2} e^{-d} (e^d - e^{-d}) = \frac{1}{2} (1 - \exp(-2d)).$$

• Under this model, $\rho(d)$ is an increasing function of d, $\rho(d) \rightarrow \frac{1}{2}$ as $d \rightarrow \infty$, and $\rho(d) \approx d$ as $d \rightarrow 0$.

• If $\rho = 0.1$, d = 0.1115 (11.15 cM). If $\rho = 0.18$, d = 0.223.

3.1.6 INTERFERENCE and OTHER MAP FUNCTIONS:

• In fact, interference exists, mainly in crossovers inhibiting the nearby presence of others, and the requirement for reliable meiosis that there is at least one chiasma on every chromosome pair.

• Pairwise interference can be characterized by coincidence function:

$$c_i(j,j') = rac{\Pr(T_{i,j} = T_{i,j'} = 1)}{\Pr(T_{i,j} = 1) \Pr(T_{i,j'} = 1)} \begin{cases} < 1 \text{ positive interference} \\ = 1 \text{ no interference} \\ > 1 \text{ negative interference} \end{cases}$$

• There are lots of models – the model determines the map function. The reverse is not true. An important positive interference map function is the Kosambi (1944) map function: many published maps of 1970s-1990s are in Kosambi cM.

• Inference and estimation is always in terms of ρ . A map function simply allows representation on a linear map. The important thing is to use the correct map function when transforming between published genetic distances and ρ .

Almost all multilocus computations assume no interference.
Dr Elizabeth A Thompson
 Stat 550: StatGen I: 2013

Chapter 3 - 7

3.2.1 COUNTING RECOMBINANTS:

• *Linkage analysis* is concerned with estimating ρ and with testing the null hypothesis H_0 : $\rho = \frac{1}{2}$ against the alternative H_1 : $\rho < \frac{1}{2}$. Estimates and tests are based on likelihoods and likelihood ratios.

• At a DNA marker locus, two grandparents have types A_1A_2 and A_3A_4 ; their daughter has type A_1A_3 .

• She marries someone of type A_2A_2 and their three children are of types A_1A_2 , A_1A_2 and A_2A_3 .

• Granddad, the daughter, and the first child all carry some trait allele D. Other individuals carry only normal + alleles.

• From grandparents to Mom we can phase her as A_1D/A_3+ . To her three kids, kids 1 and 3 are non-recombinant ($X_1 = X_3 = 0$) and kid 2 is recombinant ($X_2 = 1$). So n = 3, the number of recombinants $T \sim B(3, \rho)$, and T takes the value t = 1.

3.2.2 BACKCROSS DESIGN (Phase known):

• Where each offspring can be classified recombinant or non-recombinant, as above, the number of recombinants in n observed offspring is $T \sim B(n, \rho)$.

• Such data arise in a *backcross experiment* using two inbred lines:

al 550. StatGen 1. 2015

Chapter 3 - 9

3.2.3 BACKCROSS ANALYSIS:

• Suppose *n* offspring of such matings are scored, and *t* are recombinant. To test for linkage, compare the likelihood to its value in the absence of linkage $(\rho = \frac{1}{2})$: the log-likelihood difference is

• With base-10 logs, this is known as the lod score.

The MLE of ρ is $\hat{\rho} = t/n$, provided $2t \leq n$ (since $\rho \leq \frac{1}{2}$). To test $\rho = \frac{1}{2}$ against $\rho < \frac{1}{2}$, the maximized lod score is:

$$\operatorname{lod}(\widehat{\rho}) = t \log t + (n-t) \log(n-t) - n \log(n/2)$$

provided $2t \le n$, and 0 otherwise. This is a decreasing function of t, and we reject the null hypothesis $\rho = \frac{1}{2}$ if $t < t_0$ with critical value t_0 chosen to give a specified size of the test (type I error).

3.2.4 TYPE-1 ERROR and CRITICAL VALUES:

• When *n* is large, *T* is approximately $N(n\rho, n\rho(1-\rho))$. If $\rho = \frac{1}{2}$. $T \sim N(\frac{n}{2}, \frac{n}{4})$, is good approximation.

• Then $\frac{2}{\sqrt{n}}(T-\frac{n}{2}) \sim N(0,1)$. For a test size (type-1 error) α , reject H_0 in favor of H_1 : $\rho < \frac{1}{2}$ if $\frac{2}{\sqrt{n}}(T-\frac{n}{2}) \leq \Phi^{-1}(\alpha)$ where Φ is the standard Normal cdf.

• For example, for $\alpha = 0.025$, $\Phi^{-1}(\alpha) = -1.96 \approx -2$, so reject H_0 if $T \leq \frac{n}{2} - \sqrt{n} = k^*$.

offspring sampled		recombinant proportion		recombinants for lod
n	k^*	k^*/n		score 3
25	≈ 7	≈ 0.3	1.088	<u>≤</u> 3
100	pprox 40	pprox 0.4	0.874	\leq 31
625	pprox 287	pprox 0.46	0.905	\leq 267
1024	pprox 480	pprox 0.48	0.869	\leq 452

• Table of critical values for a test size $\alpha = 0.025$ and base-10 lod scores for binomial samples.

Dr Elizabeth A Thompson

Stat 550: StatGen I: 2013

Chapter 3 - 11

Added comments:

• The (base 10) lod score is around 1 for a number of recombinants at the critical value for a test of size $\alpha = 0.025$ of H_0 : $\rho = \frac{1}{2}$.

 \bullet Traditionally, a base-10 $\rm lod$ score of 3 is required to infer linkage. This is a more stringent test, the idea being that if two arbitrary locations in the genome are chosen the prior probability of linkage is small.

 \bullet Also given in the table is the upper bound on the number of recombinants that will provide a $\rm lod$ score of 3.

• The type-1 error at this lod-score-3 critical value k^{**} is $\Phi((2k^{**} - n)/\sqrt{n})$ which is order 10^{-4} .

3.2.5 TESTING USING natural (base-e) LOD SCORES:

• Here and on next page we use **base-e** logs !!

$$\ell(\rho) = t \log(\rho) + (n-t) \log(1-\rho), \quad \hat{\rho} = t/n$$

 $\ell(\hat{\rho}) = t \log t + (n-t) \log(n-t) - n \log n$
 $\ell(1/2) = t \log(1/2) + (n-t) \log(1-1/2) = n \log(1/2)$
 $\log(\rho) = \ell(\rho) - \ell(1/2)$

• Example 1: H_0 : $\rho = 0.1$ $2(\ell(\hat{\rho}) - \ell(0.1)) \sim \chi_1^2$ if H_0 is true.

• Example 2: But we want to test H_0 : $\rho = 0.5$ Then $2(\ell(\hat{\rho}) - \ell(0.5)) = 2 \operatorname{lod}(\hat{\rho})$ If H_0 is true, then half the time $\hat{\rho} = 0.5$, and $\ell(\hat{\rho}) = \ell(0.5)$. So $2(\ell(\hat{\rho}) - \ell(0.5))$ is $(1/2) \times 0 + (1/2) \times \chi_1^2$ if there is no linkage.

• Note this is the analogue of doing a one-sided test in testing based on the number of recombinants.

Dr Elizabeth A Thompson	Stat 550: StatGen I: 2013

Chapter 3 - 13

3.2.6 Testing equality of recombination frequencies:

• Suppose we see t_m recombinants in n_m male meioses and t_f recombinants in n_f female meioses. Then we can test $H_0: \rho_m = \rho_f$.

• Unconstrained case (general hypothesis):

$$\ell(
ho_m,
ho_f) = t_m \log(
ho_m) + (n_m - t_m) \log(1 -
ho_m) + t_f \log(
ho_f) + (n_f - t_f) \log(1 -
ho_f)$$

maximized by $\widehat{\rho_m} = t_m/n_m, \ \widehat{\rho_f} = t_f/n_f.$

• Under H_0 : if $\rho_m = \rho_f = \rho$,

$$\ell(\rho, \rho) = (t_m + t_f) \log(\rho) + (n_m + n_f - t_m - t_f) \log(1 - \rho)$$

maximized by $\hat{\rho} = (t_m + t_f)/(n_m + n_f)$.

• If H_0 is true, $2(\ell(\widehat{\rho_m}, \widehat{\rho_f}) - \ell(\widehat{\rho}, \widehat{\rho}))$ is χ_1^2 . (2 parameters in general, 1 under H_0) Remember to use **base-e** logs.