Chapter 3: Genes on chromosomes

3.1 Linkage, recombination, and genetic maps 3-1
3.2 Likelihoods and linkage lod scores 3-7
3.3 Linkage designs, power, sample size and information 3-14
3.4 Two-locus kinship and ibd 3-??
3.5 ibd and linkage lod scores 3-??

3.1.1 MEIOSIS INDICATORS AT MULTIPLE LOCI :

- Segregation of DNA at a locus j is fully specified by meiosis indicators
$S_{i, j}=0$ if DNA copied at locus j is parent's maternal DNA
$=1$ if DNA copied at locus j is parent's paternal DNA
where $i=1, \ldots, m$ indexes the meioses.
- Mendel's First Law: $S_{i, j}$ are independent over i with

$$
\operatorname{Pr}\left(S_{i, j}=0\right)=\operatorname{Pr}\left(S_{i, j}=1\right)=\frac{1}{2} .
$$

- $S_{i, j}$ are independent for loci j on different chromosome pairs $S_{i, j}$ are dependent among loci j on the same chromosome pair
- The vector $S_{\bullet, j}=\left\{S_{i, j}, i=1, \ldots, m\right\}$ is known as the inheritance vector at that locus.
$i b d$ at locus j is a function of the inheritance vector $S_{\bullet, j}$.

3.1.2 RECOMBINATION BETWEEN TWO LOCI:

- Recall there is recombination if the genes at the two loci j and l come from different parental chromosomes (different grandparents).
- For two given loci (l and j) the recombination frequency ρ between them is

$$
\rho=\operatorname{Pr}\left(S_{i, l} \neq S_{i, j}\right) \quad \text { for each } i, \quad 0 \leq \rho \leq \frac{1}{2}
$$

- The pairwise distribution of $\left(S_{i, j}, S_{i, l}\right)$ is determined by ρ.
- For loci that are close together on a chromosome, ρ is close to 0 . For independently segregating loci, $\rho=\frac{1}{2}$.

$S_{i, l}$	$S_{i, j}$		
	0	1	
0	$(1-\rho) / 2$	$\rho / 2$	$1 / 2$
1	$\rho / 2$	$(1-\rho) / 2$	$1 / 2$
	$1 / 2$	$1 / 2$	1

- In practice, recombination frequencies vary among meioses, a major factor in this variation being the sex of the parent. Computationally, this can be incorporated.

3.1.3 MULTILOCUS RECOMBINATION: NO INTERFERENCE:

- $S_{i, j}$ specifies inheritance at locus j in meosis i.
ρ_{j} is probability of recombination between locus j and locus $j+1$.
$T_{i, j}$ is indicator of recombination between locus j and locus $j+1$ in meiosis i.
- $\operatorname{Pr}\left(T_{i, j}=1\right)=\operatorname{Pr}\left(S_{i, j} \neq S_{i, j+1}\right)=\rho_{j}$.
- Assume all the $T_{i, j}$ are independent.

Then $S_{i, j}$ are Markov over j
Given $S_{i, j}, S_{i, j-1}$ is independent of $S_{i, j+1}$.

- Recombination probabilities are not additive. $\left(\rho_{1: 3} \neq \rho_{1}+\rho_{2}\right)$

For example: $\rho_{1: 3}=\operatorname{Pr}\left(S_{i, 1} \neq S_{i, 3}\right)=\rho_{1}\left(1-\rho_{2}\right)+\rho_{2}\left(1-\rho_{1}\right)$. For example: if $\rho_{1}=\rho_{2}=0.1$ then $\rho_{1: 3}=0.18$ (see lab 3).

3.1.4 GENETIC DISTANCE AND THE CROSSOVER PROCESS:

- Between two loci, the genetic distance d in Morgans is the expected number of crossovers between the loci on a given gamete.
- Regardless of the crossover process (i.e. regardless of dependence in number and locations of crossovers), genetic distance is always additive, since expectations are additive.
- Usually we measure genetic distance in centiMorgans, because a Morgan can be a whole chromosome. 100cM = 1 Morgan.
- Genetic distance has little to do with physical distance;
but $1 \mathrm{cM} \approx 10^{6} \mathrm{bp}$ is a very useful overall rule.
- In a given meiosis, between two loci, recall there is recombination, if, in the offspring gamete, there is an odd number of crossovers between the loci.
- The recombination probability, $\rho(d)$, as a function of d is the map function.

3.1.5 THE HALDANE MAP FUNCTION:

- In the model of Haldane (1919), crossovers are assumed to occur as a Poisson process, rate 1 per Morgan (by defn.). The number of crossovers $C(d)$ in genetic distance d is Poisson with mean d.
- This is a model of no genetic interference. The numbers of crossovers in disjoint intervals are independent, and, conditionally on the number occurring, their locations are uniformly and independently distributed.
- Under Haldane's model, $\rho(d)$ is the probability that a Poisson random variable with mean d is odd:

$$
\begin{aligned}
\rho(d) & =\sum_{k \text { odd }} e^{-d} \frac{d^{k}}{k!}=\frac{1}{2} e^{-d} \sum_{k=0}^{\infty}\left(\frac{d^{k}}{k!}-\frac{(-d)^{k}}{k!}\right) \\
& =\frac{1}{2} e^{-d}\left(e^{d}-e^{-d}\right)=\frac{1}{2}(1-\exp (-2 d))
\end{aligned}
$$

- Under this model, $\rho(d)$ is an increasing function of $d, \rho(d) \rightarrow \frac{1}{2}$ as $d \rightarrow \infty$, and $\rho(d) \approx d$ as $d \rightarrow 0$.
- If $\rho=0.1, d=0.1115(11.15 \mathrm{cM})$. If $\rho=0.18, d=0.223$.

3.1.6 INTERFERENCE and OTHER MAP FUNCTIONS:

- In fact, interference exists, mainly in crossovers inhibiting the nearby presence of others, and the requirement for reliable meiosis that there is at least one chiasma on every chromosome pair.
- Pairwise interference can be characterized by coincidence function:

$$
c_{i}\left(j, j^{\prime}\right)=\frac{\operatorname{Pr}\left(T_{i, j}=T_{i, j^{\prime}}=1\right)}{\operatorname{Pr}\left(T_{i, j}=1\right) \operatorname{Pr}\left(T_{i, j^{\prime}}=1\right)}\left\{\begin{array}{l}
<1 \text { positive interference } \\
=1 \text { no interference } \\
>1 \text { negative interference }
\end{array}\right.
$$

- There are lots of models - the model determines the map function. The reverse is not true. An important positive interference map function is the Kosambi (1944) map function: many published maps of 1970s-1990s are in Kosambi cM.
- Inference and estimation is always in terms of ρ. A map function simply allows representation on a linear map. The important thing is to use the correct map function when transforming between published genetic distances and ρ.
- Almost all multilocus computations assume no interference.

3.2.1 COUNTING RECOMBINANTS:

- Linkage analysis is concerned with estimating ρ and with testing the null hypothesis $H_{0}: \rho=\frac{1}{2}$ against the alternative $H_{1}: \rho<\frac{1}{2}$. Estimates and tests are based on likelihoods and likelihood ratios.

- At a DNA marker locus, two grandparents have types $A_{1} A_{2}$ and $A_{3} A_{4}$; their daughter has type $A_{1} A_{3}$.
- She marries someone of type $A_{2} A_{2}$ and their three children are of types $A_{1} A_{2}, A_{1} A_{2}$ and $A_{2} A_{3}$.
- Granddad, the daughter, and the first child all carry some trait allele D. Other individuals carry only normal + alleles.
- From grandparents to Mom we can phase her as $A_{1} D / A_{3}+$. To her three kids, kids 1 and 3 are non-recombinant ($X_{1}=X_{3}=0$) and kid 2 is recombinant $\left(X_{2}=1\right)$. So $n=3$, the number of recombinants $T \sim B(3, \rho)$, and T takes the value $t=1$.

3.2.2 BACKCROSS DESIGN (Phase known):

- Where each offspring can be classified recombinant or nonrecombinant, as above, the number of recombinants in n observed offspring is $T \sim B(n, \rho)$.
- Such data arise in a backcross experiment using two inbred lines:

$A_{1} B_{1} / A_{2} B_{2} A_{1} B_{2} / A_{2} B_{2}$
$A_{2} B_{2} / A_{2} B_{2} \quad A_{2} B_{1} / A_{2} B_{2}$
non-recombinant recombinant

Line 1: alleles A_{1} and B_{1} (genotype $A_{1} B_{1} / A_{1} B_{1}$),
Line 2: alleles A_{2} and B_{2} (genotype $A_{2} B_{2} / A_{2} B_{2}$).
Hybrid (F1): all have genotype $A_{1} B_{1} / A_{2} B_{2}$.
Backcross to line 2: all get $A_{2} B_{2}$ from the line-2 parent; combination $A_{1} B_{1}, A_{2} B_{2}$ (nonrecombinant), $A_{1} B_{2}$ or $A_{2} B_{1}$ (recombinant) from the F1 parent observable.
(Note: Have A-locus, (alleles A_{1}, A_{2}) and B-locus.)

3.2.3 BACKCROSS ANALYSIS:

- Suppose n offspring of such matings are scored, and t are recombinant. To test for linkage, compare the likelihood to its value in the absence of linkage ($\rho=\frac{1}{2}$): the log-likelihood difference is

$$
\begin{aligned}
\operatorname{lod}(\rho) & =\ell(\rho)-\ell\left(\frac{1}{2}\right) \\
& =t \log (\rho)+(n-t) \log (1-\rho)+n \log (2)
\end{aligned}
$$

- With base-10 logs, this is known as the lod score.

The MLE of ρ is $\widehat{\rho}=t / n$, provided $2 t \leq n$ (since $\rho \leq \frac{1}{2}$). To test $\rho=\frac{1}{2}$ against $\rho<\frac{1}{2}$, the maximized lod score is:

$$
\operatorname{lod}(\widehat{\rho})=t \log t+(n-t) \log (n-t)-n \log (n / 2)
$$

provided $2 t \leq n$, and 0 otherwise. This is a decreasing function of t, and we reject the null hypothesis $\rho=\frac{1}{2}$ if $t<t_{0}$ with critical value t_{0} chosen to give a specified size of the test (type I error).

3.2.4 TYPE-1 ERROR and CRITICAL VALUES:

- When n is large, T is approximately $N(n \rho, n \rho(1-\rho))$. If $\rho=\frac{1}{2}$. $T \sim N\left(\frac{n}{2}, \frac{n}{4}\right)$, is good approximation.
- Then $\frac{2}{\sqrt{n}}\left(T-\frac{n}{2}\right) \sim N(0,1)$. For a test size (type-1 error) α, reject H_{0} in favor of $H_{1}: \rho<\frac{1}{2}$ if $\frac{2}{\sqrt{n}}\left(T-\frac{n}{2}\right) \leq \Phi^{-1}(\alpha)$ where Φ is the standard Normal cdf.
- For example, for $\alpha=0.025, \Phi^{-1}(\alpha)=-1.96 \approx-2$, so reject H_{0} if $T \leq \frac{n}{2}-\sqrt{n}=k^{*}$.

offspring sampled n	critical value k^{*}	recombinant proportion k^{*} / n	$\begin{aligned} & \text { lod score } \\ & \operatorname{lod}_{10}\left(k^{*} / n\right) \end{aligned}$	recombinants for lod score 3
25	≈ 7	≈ 0.3	1.088	≤ 3
100	≈ 40	≈ 0.4	0.874	≤ 31
625	≈ 287	≈ 0.46	0.905	≤ 267
1024	≈ 480	≈ 0.48	0.869	≤ 452

- Table of critical values for a test size $\alpha=0.025$ and base-10 lod scores for binomial samples.

Added comments:

- The (base 10) lod score is around 1 for a number of recombinants at the critical value for a test of size $\alpha=0.025$ of $H_{0}: \rho=\frac{1}{2}$.
- Traditionally, a base-10 lod score of 3 is required to infer linkage. This is a more stringent test, the idea being that if two arbitrary locations in the genome are chosen the prior probability of linkage is small.
- Also given in the table is the upper bound on the number of recombinants that will provide a lod score of 3 .
- The type-1 error at this lod-score-3 critical value $k^{* *}$ is $\Phi\left(\left(2 k^{* *}-n\right) / \sqrt{n}\right)$ which is order 10^{-4}.

3.2.5 TESTING USING natural (base-e) LOD SCORES:

- Here and on next page we use base-e logs !!

$$
\begin{aligned}
\ell(\rho) & =t \log (\rho)+(n-t) \log (1-\rho), \quad \widehat{\rho}=t / n \\
\ell(\widehat{\rho}) & =t \log t+(n-t) \log (n-t)-n \log n \\
\ell(1 / 2) & =t \log (1 / 2)+(n-t) \log (1-1 / 2)=n \log (1 / 2) \\
\operatorname{lod}(\rho) & =\ell(\rho)-\ell(1 / 2)
\end{aligned}
$$

- Example 1: $H_{0}: \rho=0.1$
$2(\ell(\widehat{\rho})-\ell(0.1)) \sim \chi_{1}^{2}$ if H_{0} is true.
- Example 2: But we want to test $H_{0}: \rho=0.5$

Then $2(\ell(\widehat{\rho})-\ell(0.5))=2 \operatorname{lod}(\widehat{\rho})$
If H_{0} is true, then half the time $\widehat{\rho}=0.5$, and $\ell(\widehat{\rho})=\ell(0.5)$.
So $2(\ell(\widehat{\rho})-\ell(0.5))$ is $(1 / 2) \times 0+(1 / 2) \times \chi_{1}^{2}$ if there is no linkage.

- Note this is the analogue of doing a one-sided test in testing based on the number of recombinants.

3.2.6 Testing equality of recombination frequencies:

- Suppose we see t_{m} recombinants in n_{m} male meioses and t_{f} recombinants in n_{f} female meioses. Then we can test $H_{0}: \rho_{m}=\rho_{f}$.
- Unconstrained case (general hypothesis):

$$
\begin{aligned}
\ell\left(\rho_{m}, \rho_{f}\right)= & t_{m} \log \left(\rho_{m}\right)+\left(n_{m}-t_{m}\right) \log \left(1-\rho_{m}\right) \\
& +t_{f} \log \left(\rho_{f}\right)+\left(n_{f}-t_{f}\right) \log \left(1-\rho_{f}\right)
\end{aligned}
$$

maximized by $\widehat{\rho_{m}}=t_{m} / n_{m}, \widehat{\rho_{f}}=t_{f} / n_{f}$.

- Under H_{0} : if $\rho_{m}=\rho_{f}=\rho$,
$\ell(\rho, \rho)=\left(t_{m}+t_{f}\right) \log (\rho)+\left(n_{m}+n_{f}-t_{m}-t_{f}\right) \log (1-\rho)$
maximized by $\widehat{\rho}=\left(t_{m}+t_{f}\right) /\left(n_{m}+n_{f}\right)$.
- If H_{0} is true, $2\left(\ell\left(\widehat{\rho_{m}}, \widehat{\rho_{f}}\right)-\ell(\widehat{\rho}, \widehat{\rho})\right)$ is χ_{1}^{2}.
(2 parameters in general, 1 under H_{0})
Remember to use base-e logs.

