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1.1.1 GENETIC TERMINOLOGY:

Genome – the complete set of DNA base pairs (bp) of an organism

Chromosome— long string of double-strand DNA (part of the genome)

Locus— position on a chromosome, or DNA at that position, or the
piece of DNA coding for a trait.

Allele— type of the DNA at a particular locus on chromosome

Haplotype — the sequence of alleles along a chromosome

Diploids— organisms with two copies of the genome

Genotype— (unordered) pair of alleles at a particular locus in a par-
ticular individual.
Homozygote– a genotype with two like alleles.
Heterozygote – a genotype with two unlike alleles.

Phenotype— observable characteristics of an individual
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1.1.2 EXAMPLE: ABO blood types:

The human (haploid) genome is 3 × 109 base-pairs of DNA.
Chromosomes range from 250 Mbp down to about 50 Mbp.

Humans are diploid. Cell nucleus — has 46 chromosomes
(22 pairs of autosomes, and 2 sex chromosomes, X,Y)

The ABO locus is on chromosome 9
The (main) alleles at the locus are A, B, and O
The 6 genotypes are AA, AO, BB, BO, AB and OO

Homozygotes are AA,BB,OO.
Heterozygotes are AO,BO and AB.

The 4 phenotypes are blood types A, B, AB and O

O allele is recessive to A and to B; A and B are each dominant to O
AO and AA are blod type A; BB and BO are blood type B.

A and B are codominant: AA, AB and BB are distinguishable.

What is a gene?? – the chunk of DNA coding for a functional protein.
Not a locus. Not an allele.
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1.1.3 SEGREGATION OF ALLELES:

• One copy of our genome is maternal, the other is paternal. At any
given locus, each individual segregates a randomly chosen one of its
two genes independently to each offspring.

• Alleles have frequencies in the population: the population allele
frequency is the probability that the DNA segregating from a random
member of the population is of this allelic type. Suppose alleles A,
and B have frequencies p, q = (1 − p).

• If the types of the maternal and paternal
allele are independent, then the frequen-
cies of the three genotypes AA, AB, and
BB are p2, 2pq and q2.

Punnett A B
Square p q
A p p2 pq
B q pq q2

• Example: A heterozygote mar-
ries a random individual, what are
the probabilities for their child’s type:
p/2, (p+q)/2 = 1/2, and q/2 for
AA, AB and BB.

Punnett A B
Square 1

2
1
2

A p p/2 p/2
B q q/2 q/2
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1.1.4 MENDEL’s LAWS (Mendel, 1866):

1. At any given locus, each individual has two genes, one maternal
and the other paternal. Each individual segregates a randomly cho-
sen one of its two genes to each offspring, independently to each
offspring, independently of gene segregated by the spouse, indepen-
dently of gene segregated from parent.

2. Independently for different loci. (Not true; segregation of genes at
loci on the same chromosome are dependent)

Gamete: The sperm or egg cell (or the DNA therein) that will join to
form the offspring individual. (Note gametes are haploid – they carry
a single copy of the genome of double-stranded DNA.)

Mitosis Is the process of cell division, in which the diploid DNA is
copied to each daughter cell.

Meiosis is the biological process of offspring gamete formation; the
diploid parent cell produces haploid gametes.

Mendel’s first law says all meioses are independent.
Dr Elizabeth A Thompson Stat 550: StatGen I: 2013

Chapter 1 - 5

1.1.5 MITOSIS and MEIOSIS:

(e)

(a) (b)

(c)

(f)

(d)

Mitosis: The pair of chromosomes
(a) expand into long filaments (2
metres!!), and replicate (b), and
re-concentrate as a tetrad (d), and
divide (c), to produce two iden-
tical diploid daughter cells. (So-
matic changes can occur: ”errors”
in this process.)
Meiosis: (a), (b), (d) as in mitosis.
Followed by the first meiotic divi-
sion (e), in which chromosomes
align tightly, so that one goes to
each daughter cell. At this stage,
exchanges of material can occur.
The second meiotic division cre-
ates 4 haploid gametes. In males,
all become sperm. In females, 1
becomes egg, other discarded.
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1.1.6 INHERITANCE OF CHROMOSOMES:

CHROMOSOMES

2 loci  close

together 

gives high prob

of deriving from

same parental chromosome

5 POSSIBLE

OFFSPRING

CHROMOSOMES

TWO PARENTAL

• Offspring chromosomes consist
of alternating segments of the two
parental chromosomes.
• Chromosomes are inherited
in large chunks, ∼ 108 bp.
• Assume, no genetic interference.

• In any meiosis, crossovers oc-
cur as a Poisson process along
the chromosome. (i.e. “randomly
and independently” at some con-
stant rate)
• Between any two positions (loci),
in any meiosis, there is recombi-
nation if the DNA at those posi-
tions derives from different parental
chromosomes (i.e. odd number of
crossovers).
• Probability of recombination, ρ, in-
creases with genetic distance.
• At small distances, there is high
dependence: ρ ≈ 0.
• At large distances, even and odd
have equal probability; ρ ≈ 1/2
(independent inheritance).
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1.1.7 RECOMBINATION AND MATHER’S FORMULA:

• Transmission from a parent at two loci at recombination ρ:

Locus 1
Locus-2 mat. pat.
mat. (1 − ρ)/2 ρ/2 1/2
pat. ρ/2 (1 − ρ)/2 1/2

1/2 1/2 1

• Note that ρ = 1/2
corresponds to
independent segregation.

• Mather (1938) showed that, provided each chiasma on the tetrad
ends up as a crossover in each gamete independently with probability
1/2, then

ρ = (1/2)Pr(N > 0) = (1/2)(1 − Pr(N = 0))

where N is the number of chiasmata on the tetrad in the interval
between the two loci in question. (See Homework 3).

• Thus ρ increases as we consider larger intervals, and ρ ≤ 1/2.
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1.2.1 A SAMPLE OF GENES:

Consider a single genetic locus, with two codominant alleles A and
B. Suppose each independent gene has allelic type A with probabil-
ity q. We say q is the (population) allele frequency of allele A.

For a random sample of 2n genes from the population: the number
of A alleles is T ∼ Bin(2n, q). The MLE of q is T/2n, which is
unbiased since E(T/2n) = 2nq/2n = q.

The variance of the MLE is q(1−q)/2n which is the smallest possible
variance for any unbiased estimator.

Since Pr(T = t) ∝ qt(1 − q)2n−t the log-likelihood is

� = t log(q) + (2n − t) log(1 − q)
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1.2.1 ctd: MLE of allele frequencies:

So differentiating the log-likelihood

∂�

∂q
=

t

q
− 2n − t

1 − q
=

2n

q(1 − q)
(

t

2n
− q)

So the MLE of q is t/2n. Also

∂2�(q; t)

∂q2
= − t

q2
− 2n − t

(1 − q)2

E

�
−∂

2�(q;T )

∂q2

�
=

2n

q
+

2n

(1 − q)
=

2n

q(1 − q)

So the Fisher information is 2n/q(1 − q) and the (large-sample)
variance of the MLE is q(1−q)/2n. In this example, it is the variance
for any sample size. For large 2n, MLE’s are approx unbiased, and
have approx the smallest possible variance.
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1.2.2 A SAMPLE OF INDIVIDUALS:

Suppose we sample n individuals, and that n0 have genotype AA, n1

have genotype AB and n2 have genotype BB). (n0+n1+n2 = n).
Then we have (2n0 + n1) genes of allelic type A, in a sample of
size 2n. We can estimate q by (2n0 +n1)/2n, but properties of the
estimator depend on the genotype frequencies.

� = logL

= n0 log(Pr(AA)) + n1 log(Pr(AB)) + n2 log(Pr(BB))

In the absence of constraints:
�Pr(AA) = n0/n, �Pr(AB) = n1/n, �Pr(BB) = n2/n

Extreme case: Complete positive dependence

Suppose there are no AB individuals in the population (n1 = 0).
The two homologous genes in an individual are of the same allelic
type. The estimator is n0/n and in effect we have a sample of n
genes.
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1.2.3 HARDY-WEINBERG EQUILIBRIUM (Hardy, 1908):

Other extreme: Hardy-Weinberg equilibrium (HWE);
There is independence of the allelic types of the two homologous
genes within an individual. So Pr(AA) = q2, Pr(AB) = 2q(1− q)
and Pr(BB) = (1 − q)2

� = n0 log(q2) + n1 log(2q(1 − q)) + n2 log((1 − q)2)
= (2n0 + n1)log(q) + (n1 + 2n2) log(1 − q)

The MLE of q is (2n0+n1)/2n. If T = 2n0+n1, T ∼ Bin(2n, q).
Var(T/2n) = q(1 − q)/2n — back to binomial sampling.

Note 1: One generation of random mating establishes HWE, since,
by definition, the two genes in an individual are copies of indepen-
dently sampled parental genes. (Assuming allele frequencies in the
parental population are the same for males and females.)

Note 2: See 1.2.4 for a model of intermediate dependence.
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1.2.4 POPULATION STRUCTURE:

Suppose populations i, each in HWE, with qij the freq of allele Aj in
population i, and αi the proportion of population i.
So Pr(Aj) = q·j =

�
i αiqij

Pr(AjAj) − (Pr(Aj))
2 =

�

i

αiq
2
ij − q2

·j

=
�

i

αi(qij − q·j)2 ≥ 0

Pr(AjAl) − 2Pr(Aj)Pr(Al) = 2(
�

i

αiqijqil − q·jq·l)

= 2
�

i

αi(qij − q·j)(qil − q·l)

Thus, population subdivision results in homozygote excess relative to
HWE. This excess is known as the Wahlund (1928) variance.
In total, we therefore have heterozygote deficiency, but NOT neces-
sarily for each heterozygote.
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1.2.5 CASE OF A RECESSIVE ALLELE A:

t = n0 of type AA, and n − t not of type AA.
Assuming HWE, Pr(AA) = q2, and T ∼ Bin(n, q2). So

� = const + t log(q2) + (n − t) log(1 − q2)

Differentiating

∂�

∂q
=

2t

q
− (n − t)2q

1 − q2

=
2

q(1 − q2)
(t − nq2)

So the MLE of q is
�

t/n. Why should this be expected?

Suppose β = q2, then

∂�

∂q
=

∂�

∂β

dβ

dq
= 2q

∂�

∂β
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Fisher information and MLE Variance:

Now T ∼ Bin(n, q2), but how can we find the variance of this MLE?

∂2�

∂q2
= −2t

q2
− 2(n − t)

(1 − q2)
− (n − t)4q2

(1 − q2)2

E(−∂
2�

∂q2
) = 2n + 2n +

4q2n

(1 − q2)
=

4n

1 − q2

The variance of the MLE of q is approx. (1 − q2)/4n.
Note this is larger than q(1 − q)/2n.

We have to make assumptions (HWE)
Variance of the estimator is larger.
We can measure the information lost; information = 1/variance.

I1 = 2n/q(1 − q), I2 = 4n/(1 − q2)
I1 − I2 = 2n/q(1 + q) > 0 and is large when q ≈ 0
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1.3.1 TESTING Hardy-Weinberg PROPORTIONS (HWE):

Consider the following three samples, each of 100 individuals. Each
has 120 A alleles, so the MLE of q is 0.6, but different genotypic
counts nc in genotype class c.

n AA AB BB �� �q �̃ 2(��− �̃)
100 36 48 16 -101.33 0.6 -101.33 0
100 30 60 10 -89.79 0.6 -93.01 6.5
100 45 30 25 -106.71 0.6 -113.81 14.2

With probability pc for class c,

� = const +
�

c

nc log(pc) with
�

c

pc = 1

With no constraints, MLE of pc is nc/n, and maximized value of the
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log-likelihood is

�� =
�

c

nc log(nc/n) =
�

c

nc log(nc) − n log(n)

Assuming HWE,

p̃c = (�q2,2�q(1 − �q), (1 − �q)2) = (0.36,0.48,0.16)

�̃ =
�

c

nc log(p̃c)

Now, if HWE is true, 2 logΛ = 2(�� − �̃) is approximately χ2
1, and

larger otherwise. In our three examples, the values are 0, 6.5 and
14.2. What do we conclude?

Case 1: Someone fudged the data.
Case 2: Pr(χ2

1 > 6.5) ≈ 0.01 – marginally OK ?
Case 3: Reject the null hypothesis!!
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1.3.2 TESTING THE ABO BLOOD GROUP MODEL:

factor freq. phenotype frequencies
A B A B AB 0

Data 0.422 0.206 0.078 0.294
H1 model p q p(1 − q) (1 − p)q pq (1 − p)(1 − q)
H1 fitted 0.500 0.284 0.358 0.142 0.142 0.358
H2 model p q p2 + 2pr q2 + 2qr 2pq r2

H2 fitted 0.295 0.155 0.411 0.194 0.091 0.303

Bernstein (1925)
reported ABO blood types on a sample of 502 individuals:
42.2% type A, 20.6% type B, 7.8% type AB and 29.4% type O.
(Did he drop 2 individuals?)
For the general model

�� = 502(.422 log .422 + .206 log .206 +
.078 log .078 + .294 log .294)

= −626.71
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1.3.3 TESTING GOODNESS OF FIT: MODEL H1:

H1: A and B are independently inherited factors
Frequency of individuals having the factor A is 0.500 and of B is
0.284. Independence of the factors would give an AB frequency of
0.500 × 0.284 = 0.142 much larger than the 0.078 observed.

Under H1 the estimated frequencies are as shown in Table, and the
log-likelihood is

�1 = 502(.422 log .358 + .206 log .142 +
.078 log .142 + .294 log .358)

= −647.50

Twice the log-likelihood difference is 41.58, and would be the value of
a χ2

1 random variable if H1 were true. Clearly, H1 is rejected.
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1.3.4 TESTING MODEL H2:

Under H2: A and B are the two non-null alleles of a single system.
Assuming HWE, if the three alleles A, B and O have frequencies p,
q and r (p+ q + r = 1), then the frequencies of the four blood types
are p2 + 2pr, q2 + 2qr, 2pq and r2.
Bernstein pointed out that the sum of the A and O blood type fre-
quencies is (p + r)2, or one minus the square root of this frequency
is (1−p−r) = q. Similarly one minus the square root of the sum of
the B and O blood type frequencies is p, and the square root of the
O blood type frequency is r. The sum of these three numbers should
be one. For his data

(1 −
�

0.422 + 0.294) + (1 −
�

0.206 + 0.294) +
√

0.294
= 0.99

which is close to one, suggesting a good fit.
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1.3.5 LIKELIHOOD RATIO TEST FOR H2:

More formally, we may perform a likelihood ratio test. Finding the
MLEs of the parameters p, q and r is not simple; in fact, we shall see
later that these MLEs are �p = 0.2945 and �q = 0.1547, with the
resulting fitted frequencies given in the table. The log-likelihood is

�2 = 502(.422 log .4114 + .206 log .1942 + .078 log .0911
+ .294 log .3033) = − 627.52

Twice the log-likelihood difference between this and the general al-
ternative is now only 1.62. Again, this is the value of a χ2

1 random
variable if H2 is true: H2 is not rejected.

DEGREES OF FREEDOM: Total number of categories = 4

Lose 1 degree of freedom for fixed total: 4-1 = 3
Lose 1 for each parameter estimated : 3-2 = 1

(Under each of H1 and H2 we estimate p and q:
Under H2, r = 1 − p − q.)

Note we test each of H1,H2 against general model, not H1 vs H2.
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1.4.1 GENE COUNTING: CASE OF RECESSIVE TRAIT:

Observe n0 of recessive phenotype AA, and n1 of dominant type.

current current recessive dominant
q 2q/(1 + q) phenotype phenotype new q =

t0 = 36 t1 + t2 = 64 (2t0 + t1)/2n
AA AB BB

0.5 0.667 36 42.67 21.33 0.573
0.573 0.729 36 46.64 17.36 0.593
0.593 0.745 36 47.66 16.34 0.598
0.598 0.749 36 47.91 16.09 0.600
0.600 0.750 36 48.00 16.00 0.600

The three genotypes are AA, AB and BB, with counts say ti, (i =
0,1,2). Now, n0 = t0 is observed, but the counts of AB and BB
are unobservable since B is dominant to A. However n1 = t1 + t2
is known.
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The counting algorithm:

If counts, t1 and t2, were known, then the number of A alleles is
m1 = 2t0 + t1, and the MLE of q would be (2t0 + t1)/2n. Further,

Pr(AB | AB or BB) =
2q(1 − q)

1 − q2
=

2q

1 + q

so

Eq(t1 | n1 = t1 + t2 = 64) = 64
2q

1 + q
.

The EM-algorithm implements the sequence of iterates shown.
Starting from an arbitrary initial value q = 0.5,
• E-step: the proportion 2q/(1 + q) is computed, and the 64 indi-
viduals of dominant phenotype divided into the expected numbers t1
and t2 that are AB and BB, respectively.
• M-step: a new value of q is estimated as (2t0 + t1)/2n.
Continue alternating E-steps and M-steps until convergence.
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1.4.2 EM ALGORITHM FOR MULTINOMIAL DATA:

In latent variable problems, suppose the actual data are Y, and the
ideal data that would make the problem easy are (Y,X). The complete-
data log-likelihood is

�∗ = logPr((Y,X) = (y,x)).

The actual log-likelihood to be maximized is

� = logPr(Y = y) = log

��

x

Pr((Y,X) = (y,x))

�
.

E-step (expectation):
At the current estimate θ∗ compute ECDLL

Hy(θ; θ
∗) = Eθ∗(logPθ(X,Y) | Y = y)

M-step (maximization):
Maximize Hy(θ; θ∗) w.r.t. θ to obtain a new estimate θ̃.
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Theoretical result: �(θ̃) ≥ �(θ∗).

Thus the EM algorithm for finding MLEs alternates E-steps and M-
steps. The likelihood is non-decreasing over the process. Where
the likelihood surface is unimodal, convergence to the MLE is as-
sured, although it may be slow. Where computable, evaluate the
(log)-likelihood to assess convergence.

For multinomial data:
Let nc be actual data-counts, and

mc∗ complete-data counts for idealized data:
Each class c may be divided into several classes c∗.
So �∗ =

�
c∗ mc∗ log(pc∗): finding the ECDLL just means finding

E(mc∗|nc) = ncPr(c∗|c, θ∗) = nc
pc∗(θ∗)�

c∗→c pc∗(θ∗)

In the multinomial case, computing the ECDLL just involves imputing
the “hidden” counts, but only because �∗ is a linear function of these
counts.
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1.4.3 ABO log-likelihood for phenotypes and genotypes:

• Assume HWE, and allele frequencies p, q and r for alleles A, B and
O (p + q + r = 1).

• The actual data are the phenotype counts:
Y = (nA, nB, nAB, nO) with log-likelihood

� = nA log(p2 + 2pr) + nB log(q2 + 2qr)
+ nO log(r2) + nAB log(2pq)

Clearly this is hard to maximize directly, (but can be computed).

• The complete data are the genotype counts:
X = (mAA, mAO, ....) with complete-data log-likeliood

�∗ = mAA log(p2) + mAO log(2pr) + mBB log(q2)
+ mBO log(2qr) + mOO log(r2) + mAB log(2pq)

= const + (2mAA + mAO + mAB) log p

+ (2mBB + mBO + mAB) log q + (2mOO + mAO + mBO) log r
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1.4.4 ESTIMATION OF ABO ALLELE FREQUENCIES:

For the MLE of ABO blood group allele frequencies. the EM-algorithm
is one of the easiest ways to find the MLEs. (see table, next page)
E-step: partition the A phenotypes into expected counts of AA and
AO genotypes, and similarly B into BB and BO:

Pr(AO | type A) =
2pr

p2 + 2pr
=

2r

p + 2r

Pr(BO | type B) =
2qr

q2 + 2qr
=

2r

q + 2r
.

M-step: Then p̃ = (2Pr(AA) + Pr(AO) + Pr(AB))/2,
and q̃ = (2Pr(BB) + Pr(BO) + Pr(AB))/2.

Note p̃ does not change monotonely, but �̃ does.
(�̃ is the current value of �, not of �∗.)

• Important: Do not confuse � and �∗

�∗ is just a tool that lets us maximize �.
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Results for Bernstein’s data:

current values phenotype A phenotype B . . .
p q 2r

p+2r
2r

q+2r
Pr(A) = 0.422 Pr(B) = 0.206 . . .
AA AO BB BO . . .

0.3 0.3 0.73 0.73 0.115 0.307 0.056 0.150 . . .
0.308 0.170 0.77 0.86 0.096 0.326 0.029 0.177 . . .
0.298 0.156 0.79 0.87 0.091 0.331 0.026 0.180 . . .
0.295 0.155 0.79 0.88 0.089 0.333 0.025 0.181 . . .

phen AB phen O new values
. . . Pr(AB) = Pr(OO) = p̃ q̃ �̃
. . . 0.078 0.294 -687.12
. . . 0.078 0.294 0.308 0.170 -629.00
. . . 0.078 0.294 0.298 0.156 -627.57
. . . 0.078 0.294 0.295 0.155 -627.53
. . . 0.078 0.294 0.295 0.155 -627.52
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