
4.3 BIGGER PEDIGREES 
4.3.1 Elston-Stewart algorithm 

•  Similar ideas underlie pedigree peeling.  We don't have Markov 
chain, but, for pedigrees with no loops, we do have that, 
conditionally on the, genotype of each individual, data ``above'' is 
independent of data ``below''. 

•  Note ``above B’’ means connected to B through B’s parent(s), and 
``below B’’ means connected to B through B’s offspring (and hence 
also spouse(s). It concerns the pedigree graph, not chronology.  

•   Using functions R_i(g) = P(data below | G_i =g) 
and                          .                         R*_i(g) = P(data above, G_i=g)                              
we can form similar equations to 4.2.4, and compute the likelihood.   

•  BUT these are phased multilocus genotypes, so computation is now 
linear in pedigree size but exponential in number of loci.   

•  Methods can be extended to pedigrees with loops, but this is even 
more computationally intensive: computation is then exponential in 
the number of individuals who must be considered jointly in order to 
cut the pedigree into independent parts (the cutset). 

Peeling a zeroloop pedigree 

•  Pedigree without loops.  Shaded individuals are those for whom 
phenotypic data are assumed to be available. 

•  We can work through the pedigree, accumulating the total 
probability of observed data (see 4.2.4) conditioning on the 
genotypes of the cutset individual. 

•  Using joint functions R* and conditional functions R we can work 
both up and down the pedigree. 

•  Packages using this approach include LIPED, FASTLINK, VITESSE 

4.3.2 IBD and risk probabilities 
•  Note that the Baum algorithm, for small pedigrees gives us the 

probability of Sv(j) given all the data Y on the pedigree. 
•  Q_j(s) = P( Sv(j) =s | Y) is proportional to  
         P(Y^(j-1),Sv(j)=s) P(Yv(j) |Sv(j)=s) P(Yv(j+1),…., Yv(L) |Sv(j)=s) 
•  The first term is R*_j(s) of 4.2.4, the second is a single-locus data 

probability, and the third is a probability arising in the reverse form of 
the Baum algorithm (see 4.2.6), We will call this one R_j(s). 

•  So Q_j(s) is proportional to R*_j(s) P(Yv(j)|Sv(j)=s) R_j(s) and the 
Baum algorithm gives both R* and R and hence probabilities Q. 

•  Now on a pedigree, using the R and R* defined in 4.3.1,  
     the risk probability Q_i(g) = P(G_i=g |Y) is proportional to  
        P(data above i , G_i=g) P(Y_i | G_i=g)  P(data below i | G_i =g)  

which is  R*_i(g) P(Y_i | G_i=g) R_i(g). 
•  Here, pedigree peeling gives us the risk probabilities for individuals i 

exactly as the Baum algorithm gives us  probabilities for Sv(j) and 
hence ibd, by ``peeling’’ along the chromosome. 

4.3.3  Monte Carlo given trait data: SIMLINK 
•  In early 1980s, often we had trait data; trait data had simple known 

models (e.g. dominant, recessive). 
•  Marker maps were just starting; marker typing was expensive.   
•  How to persuade NIH that mapping is feasible and hence to fund it? 
•  We can simulate trait and marker data jointly quite easily, assuming 

some trait model, but these simulated trait data are not as observed. 
•  But it would be much better to simulate what marker data would look 

like conditional on the trait data. Ploughman and Boehnke solved 
this problem and implemented it in the program SIMLINK: 

            1) Peel up at the trait locus, saving the partial sums. 
            2) Assign founder types at the top, in accordance with trait model and   

upward peeling. 
             3) Simulate back down at the trait locus, using the saved partial sums. 
              4) Simulate at marker loci linked to the trait, at some assumed marker 

allele freq and recombination fraction. 
             5) Do the lod score for each simulated data set. 
             6) Compute an empirical Elod.  If this Elod is ``big enough'' then this 

indicates that the trait data are sufficient for marker typing to be worth doing. 
•  For some years, NIH required SIMLINK evidence in proposals. 



4.3.4 Monte Carlo Baum and  
Monte Carlo EM 

•  As well as giving the marginal distributions Q_j(s) = P( Sv(j) =s | Y) 
for locus j, the Baum algorithm also provides a Monte Carlo 
realization from the joint distribution P({S_ij} | Y).  

•  The forward computation is exactly as before.  The backward 
computation is replaced by sampling.   

•  First, Sv(L) is sampled from Q_L(.).  Then, given a realization of (Sv
(j) =s*, Sv( j+1),…,Sv(L)), a straightforward application of Bayes 
Theorem gives 

           P(Sv(j-1) =s | Sv(j) =s*, Sv(j+1),…,Sv(L), Y)   
             =  P( Sv(j-1) =s | Sv(j) =s*, Y^(j-1)) which is proportional to P

(Sv(j) =s* | Sv(j-1) =s) P(Y^(j-2), Sv(j-1) = s) P(Yv(j-1) | Sv(j-1)=s). 
•  The middle term here is R*_{j-1}(s); the others  are simple.   
•  Normalizing these probabilities over 2^m values of Sv(j-1) we have 

the required probabilities for SV(j-1); hence we can realize Sv(j-1). 
•  This is done for each j= L, L-1, …,4, 3, 2  in turn, providing an 

overall realization {S_ij} =(Sv(1), …,Sv(L)) from P({S_ij} | Y). 

Map estimation:  Monte-Carlo EM 
•  An alternative to 4.2.6 is Monte-Carlo EM.   
•  Instead of computing the bivariate distributions of (Sv(j-1), Sv(j)), N 

realizations of {S_ij}, { {S_ij}^{t}, t =1,…,N },are obtained from the 
conditional distribution of  P({S_ij} | Y) under the current parameter 
values. 

•  Monte Carlo EM simply replaces exact computation of expectations 
in the E-step with a Monte Carlo estimate. 

•  The counts of recombinants are scored exactly as in 4.2.6: 
        R^{t}_{m,j-1} ~= !_{i male}  | S^{t}_{i,j} - S^{t}_{i,j-1} |. 
•  A Monte Carlo estimate of R*_{m,j-1} is !_{t=1}^N R^{t}_{m,j-1} / N, 

and the new estimate of "_{m,j-1} is R*_{m,j-1}/M_m as before, 
again with analogous formulae for all intervals and both sexes. 

•  (Note R and R* here have nothing to do with peeling R and R*.) 
•  This Monte Carlo EM is readily implemented, and, like many Monte 

Carlo EM procedures, performs as well as the deterministic version. 
•  Initially, the Monte Carlo sample size N need not be large, although 

for the final EM steps, close to the MLE, N should be increased.  

4.3.5 Sampling ibd conditional on data: 
using computation, Monte Carlo, or MCMC 

•  Identity by descent (ibd) is a function of {S_ij}.   
•  By computing   Q_j(s) = P(Sv(j) =s | Y), j=1,…,L, (see 4.3.2) 
     we can compute probabilities of ibd at each locus j given data Y. 
•  Alternatively, by sampling {S_ij}  from P({S_ij} | Y) we can estimate 

gene ibd on pedigrees as in 4.3.4. 
•  However, this is only feasible on small pedigrees, since the forward 

computation uses the Baum algorithm. 
•  Instead, we can choose a random subset of meioses i, and 

resample Sm(i)  given Y and given all the Sm(k) for k not in the 
subset. 

•  This is just a Baum and resampling algorithm for the (small) number 
of meioses in the subset.  (All the other Sm(k) are held fixed.) 

•  This defines a Markov chain over the space of {S_ij} values.  
Subject to various conditions the equilibrium distribution is P({S_ij} | 
Y). So we can just keep repeating the resampling process, to get 
(dependent) realizations from P({S_ij} | Y). (This is MCMC.) 

4.3.6  MCMC for lod scores  
     on big pedigrees 

•  There are various ways to use {S_ij} to estimate lod scores for 
location of a trait locus given a genetic marker map.  

•  The simplest is  the Lange-Sobel (1991) approach – implemented in 
the MORGAN programs lm_markers and lm_multiple. 

•  Let Z be trait data, and Y the marker data, and {S_ij}  the inheritance 
patterns at the markers. Let #  be hypothesized position of trait 
locus.  The marker map and allele frequencies are assumed known. 

•  Then, given a fixed model for Y,  P(Z, Y ; #) is proportional to   
 P(Z | Y ; #) = !_{S_ij}  P(Z | {S_ij}; #) P({S_ij} | Y)= E(P(Z | {S_ij}; #)| Y). 
•  So we can sample  {S_ij}^{t}, t=1,…,N  given marker data Y and 

estimate  P(Z | Y;  #) by averaging the resulting values of  
     P(Z | {S_ij}^{t}; #) over the N realizations. 
•  By estimating the required  at different hypothesized #, we will have 

a Monte Carlo estimate of the lod score curve (over #). 
•  An advantage of this particular approach is that only one sequence 

of MCMC realizations {S_ij}^{t}, t=1,…,N  are required, since the 
MCMC is conditional only on Y. 


