
4.2  Multilocus linkage analysis 
4.2.1 Meiosis indicators at multiple loci 

•  For multiple loci, j, j=1,…,L                   
           S_ij  =  0  if gene at meiosis i locus j is parent's maternal 
                   =  1  if gene at meiosis i locus j is parent's paternal. 

•  We define Sv(j)  =  { S_ij; i=1,…, m }, for  j=1,…, L      
                      Sm(i)  = { S_ij; j=1,…, L}, for  i=1,…, m  
     where m is the number of meioses in the pedigree, and L the 

number of loci along the chromosome. 

•  Dependence of the {S_ij}: 
           Sm(i) are independent over i, i=1,...,m.  
           S_ij are independent for loci j on different chromosome pairs   
           Sv(j) are dependent among loci j on the same chromosome pair 

4.2.2  Conditional independence  
(no interference) 

•  Assume that L loci are ordered 1,…,L along the chromosome 
•  Let the intervals between successive loci be I(1),…,I(L– 1). 
•  Let T(i, j)=1  if a gamete resulting from meiosis i is recombinant on 

interval I(j), and T(i, j) =0 otherwise (j=1,…,L-1).  
•  Then, in a given meiosis i 
                T(i, j)  =  1  if S_ij !  S_i,j+1,    
      and    T(i, j)  =  0  if S_ij = S_i,j+1,   for j=1,…,L-1. 
•  A model for Sm(i)  is equivalent to a model for  (T(i,1}, …, T(i,L-1)). 
•  The simplest models for meiosis assume no interference. 
•  In this case the T(i,j) are independent over i and j.   
•  Then the S_ij are first-order Markov over loci j, with meioses i 

always being independent.    
•  One way to express this is that 
         P(S_ij  | S_i1,..., S_i,j-1)  =  P(S_ij | S_i,j-1)   so that 
         P(Sm(i)) =  P(S_i,1) "_{j=2}^L  P(S_ij | S_i,j-1) or,  
     combining the meioses     
         P({S_ij}) =  P(Sv(1)) "_{j=2}^L  P(Sv(j) | Sv(j-1))  (see also 4.2.4). 

•  Another way of expressing this Markov dependence is through the 
probability of any given indicator S_ij conditional on all the others. 

•  S_ij given S_{-(i,j)} = { S_kl; (kl) ! (i,j)}, depends only on the indicators for 
the same meiosis and the two neighboring loci.  

•  For s=0,1, P(S_ij =s | S_{-(i,j)} )  = P(S_ij=s | S_i,j+1, S_i,j-1)   which is 
proportional to 

          #(j-1)^|s-S_i,j-1| x (1 - #(j-1))^{1-|s-S_i,j-1| }  x 
                                     x #(j)^|s-S_i,j+1|  x  (1 - #(j))^{1-|s-S_i,j+1|}  where  
        #(j) = P(T(i,j) = 1) = P(S_ij ! S_i,j+1) is the recombination frequency in I(j). 
•  Note that the equation just counts the recombination/non-recombination 

events in intervals I(j-1) and I(j), implied by the three indicators  
      (S_i,j-1, S_ij=s, S_i,j+1). 

•  Recall  in Chapter 2 we discussed for a single locus the equations  
         P(Y ) =  $_{S_ij}  P(Y | {S_ij}) P({S_ij})  =  $_{S_ij} P(Y | J({S_ij}) P({S_ij})  
            =   $_J  P(Y | J) P(J), where J was the ibd pattern determined by {S_ij}. 
•  There are fewer ibd patterns than values of {S_ij}. However, although the  

component S_ij are Markov over loci j, gene ibd patterns are not.   
•  Different values of Sv(j) may give rise to the same ibd pattern at locus j.  
     Grouping the states of a Markov chain does not, in general, produce a 

Markov chain.  So to use the Markov dependence, we have to use {S_ij}. 

4.2.3 The hidden Markov structure 

•  The conditional independence structure of data, in the absence of 
genetic interference. 

•  The figure shows the Markov dependence of the Sv(j). 
•  Also the data Yv(j) at locus j depends only on the inheritance Sv(j) at 

that locus, (and on allele frequencies etc. for locus j). 
•  Given Sv(j),  {Yv(k), k=(j+1), … L}, Yv(j), and Sv(j-1) are mutually 

independent. 
•  OR, given Sv(j),   {Yv(k),k=1, …,j-1} = Y^(j-1), Yv(j), and  Sv(j+1) are 

mutually independent. 



4.2.4 Baum algorithm for total probability 

•  For data observations Y=(Yv(j), j=1,…,L), we want to compute P(Y).  
•  Due to the first-order Markov dependence of the Sv(j), we have  P

(Y) = $_{S_ij} P({S_ij}, bY)  = $_{S_ij} P(Y | {S_ij}) P({S_ij})   
             = $_{S_ij}  ( P(Sv(1)) "_{j=2}^L P(Sv(j) | Sv(j-1))  ) 
                                              (  "_{j=1}^L P(Yv(j) | Sv(j)) ). 
•  We can go forwards. Let Y^(j) = (Yv(1), …, Yv(j)), the data along the 

chromosome up to and including locus j.  Note Y = Y^(L). 
•  Now define the joint probability 
            R*_j(s)  =  P(Yv(k), k=1,…,j-1, Sv(j)=s)  = P(Y^(j-1), Sv(j)=s)  
     with R*_1(s) = P(Sv(1) =s). 
•  Then for j=1,2,…,L-1  
    R*_{j+1}(s)  = $_s*  ( P( Sv(j+1) =s | Sv(j)=s*)  
                                                       P(Yv(j) | Sv(j) =s*)  R*_j(s*)  ), 
•  With P(Y)  =  $_s* P(Yv(L) | Sv(L) =s*) R*_L (s*). 

4.2.5 Lander-Green algorithm 
•  We can compute P(Yv(j) | Sv(j))  for simple traits– recall the example at end 

of Chapter 2.Then the computation method of 4.2.4 can be applied. 
•  However this exact computation is limited to small pedigrees.  If there are m 

meioses on the pedigree, then Sv(j) can take 2^m values. Computations 
involve, for each locus, transitions from the 2^m values of Sv(j) to the 2^m 
values of Sv(j+1). 

•  Computation is of order L 2^m 2^m= L 4^m. For Genehunter, for a pedigree 
with n individuals, f of whom are founders, m = 2 n -3 f, and m % 16.  

•  Additionally, for each locus and for each value of Sv(j), we must compute P
(Yv(j) | Sv(j) ).  Although this is easy for given Sv(j), this limits size of 
pedigree.  

•  Actually better algorithms using independence of meioses give us a 
factored HMM which means we can get an algorithm of order L m 2^m but it 
is still exponential in pedigree size. 

•  The map-specific lod score is log_10 (L(d)/L(&)), where d is the 
hypothesized chromosomal location of the trait locus measured in genetic 
distance, and d=& corresponds to #=1/2, or absence of linkage. (For 
Genehunter, distances are relative to first marker at d=0.) 

•  The location score is defined as 2 log_e (L(d)/L(&)). Under appropriate 
conditions, this statistic has approximately a chi-squared distribution in the 
absence of linkage. 

•  We consider lod scores for the location d, rather than location scores. 
•  Genehunter, Allegro, and Merlin are packages using this general approach. 

4.2.6 EM algorithm  
for estimating genetic maps 

•  Consider the complete-data log-likelihood 
      log P({S_ij}, Y)  = log (P(Sv(1)) +$_{j=2}^L  log (P(Sv( j) | Sv(j-1)) )     
                                     + $_{j=1}^L log (P(Yv(j) | Sv(j) )) 
•  Now recombination parameters enter through 
        log ( P(Sv(j) | Sv(j-1)) )  =  
            R_{m,j-1} log(#_{m,j-1}) + (M_m – R_{m,j-1}) log (1- #_{m,j-1})  
        +  R_{f,j-1} log(#_{f,j-1}) +(M_f – R_{f,j-1}) log (1- #_{f,j-1}) 
•  where  R_{m,j-1} = $_{i male} | S_{i,j} - S_{i,j-1} | is the number of 

recombinations in interval I(j-1) in male meioses, #_{m,j-1} the 
recombination rate, and M_m is the total number of male meioses 
scored in the pedigree. 

•  and similarly R_{f,j-1}, #_{f,j-1}) and M_f for female meioses. 
•  The expected complete-data log-likelihood requires only 

computation of 
       R*_{m,j-1}  =  E ( R_{m,j-1} | Y)  = $_{i male} E( | S_ij - S_i,j-1 | | Y) 
     and similarly R*_{f,j-1}. 

•  Since the complete-data log-likelihood is a simple binomial log-
likelihood, the M-step sets the new estimate of #_{m,j-1} to  

     R*_{m,j-1}/M_m, and similarly for all intervals j=2,3,…,L and for both 
the male and female meioses. 

•  Note that  P(Sv(j-1), Sv(j) | Y ) = P(Sv(j-1), Sv(j) , Y ) / P(Y)  
     and P(Sv(j-1), Sv(j) , Y )  = P(Y^(j-2), Sv(j-1)) P(Yv(j-1) | Sv(j-1)) 
           P(Sv(j) | Sv(j-1)) P(Yv(j) | Sv(j)) P(Yv(j+1), ...., Yv(L) | Sv(j)) 
•  The first term is just the  R*_{j-1}(Sv(j-1)) we had in the Baum 

algorithm, the second and fourth are just single-locus probabilities of 
data given inheritance, the third is just the recombination/non-
recombination transitions, and the final one can be computed by  
backwards (conditional) version of the Baum algorithm.  

•  Note there are many different forms of the Baum algorithm 4.2.4, all 
closely related but providing probabilities of slightly different events. 

•  The EM algorithm is thus readily implemented to provide maximum 
likelihood (MLE) estimates of recombination frequencies for all 
intervals and for both sexes. 


