4.2 Multilocus linkage analysis
4.2.1 Meiosis indicators at multiple loci

For multiple loci, j, j=1,...,L
S_ij = 0 if gene at meiosis i locus j is parent's maternal
= 1 if gene at meiosis i locus j is parent's paternal.

We define Sv(j) = {S_ij; i=1,...,m}, for j=1,..., L

m(i) ={S_ij; j=1,..., L}, for i=1,..., m
where m is the number of meioses in the pedigree, and L the
number of loci along the chromosome.

Dependence of the {S_ij}:
Sm(i) are independent over i, i=1,...,m
S_ij are independent for loci j on different chromosome pairs
Sv(j) are dependent among loci j on the same chromosome pair

Another way of expressing this Markov dependence is through the
probability of any given indicator S_ij conditional on all the others.

S_ij given S_{-(i,j)} éS kl; (kI) # (i,j)}, depends only on the indicators for
the same meiosis and the two neighboring loci.

For s=0,1, P(S_ij =s | S_{-(i,j)} ) =P(S_ij=s | S_i,j+1, S_i,j-1) which is
proportional to
P(-1)"s-S_ij-11 x (1 - p(-1))"{1-s-S_i,j-1] } x
x p()Ms-S_i,j+1] x (1-p()M1-|s-S_i,j+1[} where
p(j) = P(T(i,j) = 1) = P(S_ij # S_i,j*+1) is the recombination frequency in I(j).
Note that the equation just counts the recombination/non-recombination
events in intervals I(j-1) and I(j), implied by the three indicators
(S_i,j-1, S_ij=s, S_i,j+1).

Recall in Chapter 2 we discussed for a single locus the equations
P(Y)= X {S_ij} P(Y |{S_ij}) PUS_ijp = Z_{S_ij} P(Y | J{S_ij}) P{S_ij})
= ¥ J P(Y|J)P({J), where J was the ibd pattern determined by {S_ij}.

There are fewer ibd patterns than values of {S_ij}. However, although the
component S_ij are Markov over loci j, gene ibd patterns are not.

Different values of Sv(j) may give rise to the same ibd pattern at locus j.

Grouping the states of a Markov chain does not, in general, produce a
Markov chain. So to use the Markov dependence, we have to use {S_ij}.

4.2.2 Conditional independence
(no interference)

Assume that L loci are ordered 1,...,L along the chromosome
Let the intervals between successive loci be I(1),...,I(L— 1).
Let T(i, j)=1 if a gamete resulting from meiosis i is recombinant on
interval 1(j), and T(i, j) =0 otherwise (j=1,...,L-1)
Then, in a given meiosis i
T@,j) = 1 ifS_ij# S_i,j+1,
and T(,j) = 0 if S_ij=S_i,j+1, forj=1,...,L-1.
A model for Sm(i) is equivalent to a model for (T(i,1}, ..., T(i,L-1)).
The simplest models for meiosis assume no interference
In this case the T(i,j) are independent over i and j.

Then the S_ij are first-order Markov over loci j, with meioses i
always being independent.

One way to express this is that
P(S_jj | S_i1,..., S_i,j-1) = P(S_ij| S_i,j-1) so that
P(Sm(i)) = P(S_i,1) N_{j=2}*L P(S_ij| S_i,j-1) or,
combining the meioses
P{S_ij}) = P(Sv(1)) N_{i=2}"L P(Sv(j) | Sv(j-1)) (see also 4.2.4).

4.2.3 The hidden Markov structure
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The conditional independence structure of data, in the absence of
genetic interference.

The figure shows the Markov dependence of the Sv(j).

Also the data Yv(j) at locus j depends only on the inheritance Sv(j) at
that locus, (and on allele frequencies etc. for locus j).

Given Sv(j), {Yv(k), k=(j+1), ... L}, Yv(j), and Sv(j-1) are mutually
independent.

OR, given Sv(j), {Yv(k),k=1, ...,j-1} = YA(j-1), Yv(j), and Sv(j+1) are
mutually independent.



4.2.4 Baum algorithm for total probability

For data observations Y=(Yv(j), j=1,...,L), we want to compute P(Y).
Due to the first-order Markov dependence of the Sv(j), we have P
() =Z_{S_ij} P{S_ij}, bY) =% _{S_ij} P(Y | {S_ij}) P{S_ij})
=2 {S_ij} (P(Sv(1)) M_{j=2}"L P(Sv(j) | Sv(j-1)) )
( M_{=1}"L PCYV() | SV()) ).
We can go forwards. Let YA(j) = (Yv(1), ..., Yv(j)), the data along the
chromosome up to and including locus j. Note Y = YA(L).

Now define the joint probability
R*_j(s) = P(Yv(k), k=1,...,j-1, Sv(j)=s) = P(Y*(-1), Sv(j)=s)
with R*_1(s) = P(Sv(1) =s).
Then for j=1,2,...,L-1
R*_{j+1}(s) =Z_s* (P(Sv(j+1)=s | Sv(j)=s*)
P(YV(j) | Sv(j) =s*) R*_j(s*) ),
With P(Y) = %£_s* P(Yv(L) | Sv(L) =s*) R*_L (s*).

4.2.6 EM algorithm
for estimating genetic maps

Consider the complete-data log-likelihood
log P({S_ij}, Y) =log (P(Sv(1)) +Z_{j=2}"L log (P(Sv(}j) | Sv(j-1)))
+2_{i=1}"L log (P(YV(j) | Sv(j) )

Now recombination parameters enter through

log (P(Sv(j) | Sv(-1))) =

R_{m,j-1}log(p_{m.j-1}) + (M_m — R_{m,j-1}) log (1- p_{m.j-1})

+ R_{fj-1} log(p_{f,j-1}) +(M_f - R_{f,j-1}) log (1- p_{f,j-1})
where R_{m,j-1} = £_{i male} | S_{i,j} - S_{i,j-1} | is the number of
recombinations in interval I(j-1) in male meioses, p_{m,j-1} the
recombination rate, and M_m is the total number of male meioses
scored in the pedigree.

and similarly R_{f,j-1}, p_{f,j-1}) and M_f for female meioses.

The expected complete-data log-likelihood requires only
computation of

R* {m,j-1} = E(R_{m,j-1}]Y) =X _{imale} E(| S_ij-S_i,j-1]1Y)
and similarly R*_{f,j-1}.

4.2.5 Lander-Green algorithm

We can compute P(Yv(j) | Sv(j)) for simple traits— recall the example at end
of Chapter 2.Then the computation method of 4.2.4 can be applied.
However this exact computation is limited to small pedigrees. If there are m
meioses on the pedigree, then Sv(j? can take 2”m values. Computations
involve, for each locus, transitions from the 2*m values of Sv(j) to the 2*m
values of Sv(j+1).

Computation is of order L 2*m 2*m= L 4"m. For Genehunter, for a pedigree
with n individuals, f of whom are founders, m=2n-3 f, and m < 16.
Additionally, for each locus and for each value of Sv(g']), we must compute P
(Yv(j) | Sv()) ). Although this is easy for given Sv(j), this limits size of
pedigree.

Actually better algorithms using independence of meioses give us a
factored HMM which means we can get an algorithm of order L m 2*m but it
is still exponential in pedigree size.

The map-specific lod score is log_10 (L(d)/L(«)), where d is the
hypothesized chromosomal location of the trait locus measured in genetic
distance, and d=« corresponds to p=1/2, or absence of linkage. (For
Genehunter, distances are relative to first marker at d=0.)

The location score is defined as 2 log_e (L(d)/L(«~)). Under appropriate
conditions, this statistic has approximately a chi-squared distribution in the
absence of linkage.

We consider lod scores for the location d, rather than location scores.
Genehunter, Allegro, and Merlin are packages using this general approach.

Since the complete-data log-likelihood is a simple binomial log-

likelihood, the M-step sets the new estimate of p_{m,j-1} to

R*_{m,j-1}Y/M_m, and similarly for all intervals j=2,3,...,L and for both

the male and female meioses.

Note that P(Sv(j-1), Sv(j) | Y ) = P(Sv(j-1), Sv(j), Y )/ P(Y)

and P(Sv(j-1), Sv(j), Y ) = P(Y~(j-2), Sv(j-1)) P(Yv(j-1) | Sv(j-1))
P(Sv(j) | Sv(-1)) P(YV(j) | Sv(j)) P(YV(j+1), ..., YV(L) | Sv(j))

The first term is just the R*_{j-1}(Sv(j-1)) we had in the Baum

algorithm, the second and fourth are just single-locus probabilities of

data given inheritance, the third is just the recombination/non-

recombination transitions, and the final one can be computed by

backwards (conditional) version of the Baum algorithm.

Note there are many different forms of the Baum algorithm 4.2.4, all

closely related but providing probabilities of slightly different events.

The EM algorithm is thus readily implemented to provide maximum

likelihood (MLE) estimates of recombination frequencies for all

intervals and for both sexes.



