3.3 Linkage Designs and Information
3.3.1 Phase unknown backcross

* In human pedigrees, we often cannot
classify individuals as recombinant and non-
recombinant.

* One possibility is a phase-unknown
backcross.

* As before, one parentis A1A2,B1B2 and
the other is A2A2,B2B2, but now the first M4z, BB,
parent may be A1B1/A2B2 (type 1 haplo-
types), or A1B2/A2B1 (type 2 haplotypes).

* Suppose we have nf?uch families, and in
each type just two offspring. Each gets
A2B2 from the mother, so, as before, we AlBl/AjBé /A BA‘BZ/A/{Bé /4B
know what each got from the father. woel 0 ypea

* If both offsprlng %;et the same ““type" of
haplotype (type 1 or type 2), then either bott
are recombinant, or nelther |s so this event
has probability p*2 + (1- p)"2.

« Or there is one of each: then one offspring
must be a recombinant and the other not.
This event has probability p* =2 p (1 - p).

Az A2, BaBy

3.3.2 INTERCROSS EXPERIMENT

* Another classic design for experimental organisms is the intercross.

» Two phase-known parents, each of type A1B1/A2B2 are mated.
There are nine types of offspring, but these fall into four groups.

» Each type within a group has the same probability, as a function of
p, and hence the total count of offspring in each group contains all
the available information for linkage.

* These total counts are the sufficient statistics for p.

Phase unknown backcross: analysis

Instead of a T ~ B(n, p) recombinants, we have a W ~ B(n, p*)
families.

For 0 < p <1/2, p*is a 1-1 monotone increasing function of p, and
whenp=1/2,p*=2p (1-p ) =2x (1/2) x (1/2) = 1/2.

So testing HO: p = 1/2 against H1: p < 1/2, is equivalent to testing
HO*: p* = 1/2 against H1*: p* < 1/2.

Thus the test is as before; reject p* = 1/2 and infer linkage if W < w0,

where the critical value w0 is determined by the desired size (type 1
error) of the test.

The critical values are exactly as for the phase-known case, with p*
replacing p, and n now denoting the number of two-child families.

Of course, the tests properties are different. When p=0.3, for
example, p*=2x0.3x0.7= 0.42, which is closer to 1/2. It will be
correspondingly harder to detect linkage.

We return to this in section 3.4.

3.3.3 INTERCROSS EXPERIMENT
Analysis: the type probabilities

Group Il includes both double-heterozygote two-locus genotypes
A1B1/A2B2 and A1B2/A2B1.

Group lll includes the four types heterozygous at one of the two loci:
A1A1,B1B2; A1A2,B1B1; A2A2,B1B2 and A1A2,B2B2.

The following table gives the type probabilities under alternative
hypotheses:

Type |genotypes number |each prob.

| A1A1,B2B2; A2A2,B1B1 2 pr2/4

[ A1A2,B1B2 1 (P2 + (1-p)"2)/2
[ A1A1,B1B2 etc. 4 p (1- p)/2

\% A1A1,B1B1; A2A2,B2B2 2 (1-p)h2/4

Types H2:general H1: total prob HO:p=1/2
I q1 p"2 /12 0.125

I g2 (P2 + (1-p)*2)/2 | 0.25

i q3 2p(1-p) 0.5

v q4 (1-pM*2 /2 0.125




INTERCROSS EXPERIMENT
Analysis: testing fit.

Consider a sample of size n, with nj in class j, j=1,2,3,4.

The log-likelihood for these multinomial data is,

A(q) = const + sum_{j=1}"4 nj log qj(p).

The probabilities of each phenotype group are shown, under the
general multinomial model H2, the general intercross linkage model
H1, and in the absence of linkage HO.

For example, suppose n = (1, 72, 42, 85).

Under H2: general q j, q1+q2+q3+g4 = 1. MLE qj* = nj/n, or

q* = (0.005, 0.36, 0.21, 0.425). dim(H2) = 3.

Under H1: general p, for these data we find, by evaluating the log-
likelihood, that p* = 0.12 giving

q*(p) = (0.007, 0.394, 0.211, 0.387). dim(H1) = 1.

The null hypothesis is of no linkage; HO: p = 1/2.

q*(1/2)=(0.125, 0.25, 0.5, 0.125) and dim(HO) = 0.

Estimated cell probabilities under H1 and H2 are in good
agreement, but quite different from those under HO.

3.4 POWER and INFORMATION
3.4.1 POWER and SAMPLE SIZE

If p is the true value, the probability a null hypothesis H_0 is rejected is the
power function of the test.

For example, usin%the Normal approximation for a phase-known backcross

or any example where we count recombinants), the power is
(T<t0;p) = P ((T-np)N(np(1-p)) < (t0-np)N(np (1-p)))
= ®((t0 - n p)N(n p (1- p)) -
But now (from 3.2.3), t0 = (n/2) + (\n/2)®*-1}(a) , so
P(T <10 ; p) = O((®M-1}(a) + Vn (1-2 p))/ (2V(p (1- P))))
Note when p =1/2 this is equal to q, the test type-1 error.
It decreases over 0 < p < 1/2. Clearly, for a given sample size, linkage is
more easily detected when p is small. i.e. the power is larger.
Conversely, for given p , one may determine the sample size n required for
given power. For example, if p =0.1, what n is required for 90% power.

For the phase-unknown backcross. the power and sample-size
computations are exactly as for the phase-known case, with p*=2 p (1-p)
replacing p, and n now denoting the number of two-child families.

Intercross experiment: testing hypotheses

Computing the maximized log-likelihoods for Hi, i=0,1,2, we find that they
are -307.76, -217.87, and -217.14 respectively.

For testincg; null HO against H1, the (base €) lod score is 89.9.  Twice this
value (179.8) has approximately a x*2_1 if HO is true. So HO is rejected.

For testing null H1 against alternative H2, the lod score is 0.73, and twice

this value (1.46) is x"2_2 if H1 is true. So H1 is not rejected.

As with the phase-known backcross, this all extends to the estimation and
testing of two recombination frequencies p_m in males, and p_f in females.
Although for the intercross experiment, each offspring gives us a male and
a female meiosis, we generally will not know which one is recombinant.
The probabilities of the Table of 3.3.3 now depend on p_m and p_f.

For example the firstis (p_m p_f)/2.

A likelihood ratio test may be derived in a similar way to Example 3 of the
phase known backcross (3.2.4), to test equality of male and female
recombination frequencies.

However the MLEs of p_m and p_f are now harder to find.

3.4.2 Kullback-Leibler information

The Kullback-Leibler (KL) information is a log-likelihood based measure
appropriate for testing hypotheses (as opposed to Fisher Information which
concerns estimation).

For multinomial data in general, we can find the form of the KL information.
Suppose there are ¢ categories and suppose q is the true value of the cell
probabilities qi, i=1,...,c, and q0 is some hypothesized value.

Then A(q) = sum_{i=1}*c n_j log g_j. where here we use base-e logs.

So for a sample size n, K_n (q0; = E(Nq)-A(qO0) ;

=n sum_{i=Q}"c qi (log qi —((?og c)10i)) =(n (s%)m_{i(g1 })"c gi )Iog (qi/qOi).

For a single observation, K=K_1(q0; q) = sum_{i=1}"c qi log (qi / q0i).

In the case of linkage analysis data, qgi = qi(p) and the null hypothesis is

HO: p =1/2: q0i= qslg(1/2).

Evaluating the KL information for testing p=1/2, for the binomial (c=2)
phase-known and (2-offspring) phase-unknown backcross experiments, and
for the intercross experiment (c=4) we obtain the values for the information
per offspring sampled shown on the next page.



KL Information in linkage designs

True p 0.0 0.1 0.2 0.3 0.4 0.5

Backcross: 0.69 0.368 |0.193 0.082 0.021 |0

phase known

Backcross: 0.35 0.111 |0.033 0.006 0.0004 |0

phase unknown

Intercross 1.04 0.479 |0.226 0.089 0.021 0

This measures information, per offspring sampled, for detecting linkage
when p is the true value. As expected, the more p differs from 1/2 the more
information there is.

Also each phase-known offspring contributes at least twice as much as in
the phase-unknown case. When p is close to 1/2, the phase-unknown two-
offspring design provides very little information.

As expected, each intercross offspring contains more information than a
backcross offspring. But there is not twice as much information, as there
would be if the meioses were fully observable.

As p — 1/2, there is almost no additional information in doing an intercross
design rather than a backcross.

3.4.3 Elods and sample size

The Kullback-Leibler information for testing p = 1/2 is the expected
base-e lod score at the true value of the recombination frequency p.

This, but base-10, is a measure very widely used in linkage analysis
and known as the Elod.

Note we expect the base-e lod score to be approximately nK when
nis large. For our intercross data with n=200, we had p*= 0.12; in
fact, the data were simulated at p = 0.1. Then 200x 0.479 is about
95, in good agreement with the (base-e) lod score value of 90 which
we obtained (last page of 3.3.3).

This also tells us that if we had realized that p might be around 0.1,
it was very wasteful to breed 200 mice. When p = 0.1, about 20
mice are expected to give a lod score (base e) of more than 9; this is
plenty to detect that p # 1/2.

Note again that we have used natural logarithms in these examples,
contrary to standard practice in genetics.



