
3.3 Linkage Designs and Information 
3.3.1 Phase unknown backcross 

•  In human pedigrees, we often cannot 
classify individuals as recombinant and non-
recombinant.   

•  One possibility is a phase-unknown 
backcross.  

•  As before, one parent is  A1A2,B1B2 and 
the other is A2A2,B2B2, but now the first 
parent may be A1B1/A2B2 (type 1 haplo-
types), or A1B2/A2B1 (type 2 haplotypes).   

•  Suppose we have n such families, and in 
each type just two offspring.  Each gets 
A2B2 from the mother, so, as before, we 
know what each got from the father.  

•  If both offspring get the same ``type'' of 
haplotype (type 1 or type 2), then either both 
are recombinant, or neither is, so this event 
has probability !^2 + (1- !)^2. 

•  Or there is one of each: then one offspring 
must be a recombinant and the other not. 
This event has probability !* = 2 ! (1 - !). 

Phase unknown backcross: analysis 

•  Instead of a T ~ B(n, !) recombinants, we have a W ~ B(n, !*) 
families. 

•  For 0 " ! " 1/2, !* is a 1-1 monotone increasing function of !, and 
when ! = 1/2, !* = 2 ! (1- ! ) = 2x (1/2) x (1/2) = 1/2.  

•  So testing H0: ! = 1/2 against  H1: ! < 1/2, is equivalent to testing 
H0*: !* = 1/2 against H1*: !* < 1/2. 

•  Thus the test is as before; reject !* = 1/2 and infer linkage if W < w0, 
where the critical value w0 is determined by the desired size (type 1 
error) of the test. 

•   The critical values are exactly as for the phase-known case, with !* 
replacing !, and n now denoting the number of two-child families. 

•  Of course, the tests properties are different. When !=0.3, for 
example, !*=2x0.3x0.7= 0.42, which is closer to 1/2. It will be 
correspondingly harder to detect linkage. 

•  We return to this in section 3.4. 

3.3.2 INTERCROSS EXPERIMENT 
•  Another classic design for experimental organisms is the intercross. 
•  Two phase-known parents, each of type A1B1/A2B2 are mated. 

There are nine types of offspring, but these fall into four groups.  
•  Each type within a group has the same probability, as a function of 
!, and hence the total count of offspring in each group contains all 
the available information for linkage. 

•  These total counts are the sufficient statistics for !. 

Type genotypes number each prob. 
  I A1A1,B2B2;  A2A2,B1B1         2   !^2/4 

 II A1A2,B1B2         1 (!^2 + (1-!)^2)/2 
 III A1A1,B1B2  etc.          4  ! (1- !)/2 

 IV A1A1,B1B1;  A2A2,B2B2         2 (1 – ! )^2 /4 

3.3.3 INTERCROSS EXPERIMENT 
 Analysis: the type probabilities 

•  Group II includes both double-heterozygote two-locus genotypes 
A1B1/A2B2 and A1B2/A2B1.  

•  Group III includes the four types heterozygous at one of the two loci: 
A1A1,B1B2; A1A2,B1B1; A2A2,B1B2 and A1A2,B2B2. 

•  The following table gives the type probabilities under alternative 
hypotheses: 

Types    H2:general    H1:  total prob H0:!=1/2 

I       q1     !^2 /2 0.125 

II       q2   (!^2 + (1- !)^2)/2 0.25 

III       q3    2 ! (1 – !) 0.5 

IV       q4    (1- !^)*2 /2 0.125 



INTERCROSS EXPERIMENT 
Analysis: testing fit.  

•  Consider a sample of size n, with nj in class j, j=1,2,3,4. 
•  The log-likelihood for these multinomial data is,                                .    
#(q) = const + sum_{j=1}^4 nj log qj(!). 

•  The probabilities of each phenotype group are shown, under the 
general multinomial model H2, the general intercross linkage model 
H1, and in the absence of linkage H0. 

•  For example, suppose n = (1, 72, 42, 85). 
•  Under H2: general q j, q1+q2+q3+q4 = 1. MLE qj* = nj/n, or            

q* = (0.005, 0.36, 0.21, 0.425). dim(H2) = 3. 
•  Under H1: general !, for these data we find, by evaluating the log-

likelihood, that  !* = 0.12 giving                                                               
q*(!) = (0.007, 0.394, 0.211, 0.387). dim(H1) = 1. 

•  The null hypothesis is of no linkage; H0: ! = 1/2. 
•  q*(1/2)= (0.125, 0.25, 0.5, 0.125) and dim(H0) = 0. 
•  Estimated cell probabilities under H1 and H2 are in good 

agreement, but quite different from those under H0. 

Intercross experiment: testing hypotheses 

•  Computing the maximized log-likelihoods for Hi,  i=0,1,2, we find that they 
are -307.76, -217.87, and  -217.14 respectively. 

•  For testing null H0 against H1, the (base e) lod score is 89.9.     Twice this 
value (179.8) has approximately a $^2_1 if H0 is true.   So H0 is rejected. 

•  For testing null H1 against alternative H2, the lod score is 0.73, and twice 
this value (1.46) is $^2_2 if H1 is true. So H1 is not rejected.  

•  As with the phase-known backcross, this all extends to the estimation and 
testing of two recombination frequencies !_m in males, and  !_f in females.  

•  Although for the intercross experiment, each offspring gives us a male and 
a female meiosis, we generally will not know which one is recombinant. 

•  The probabilities of the Table of 3.3.3  now depend on !_m  and !_f.         
For example the first is  (!_m  !_f)/2. 

•  A likelihood ratio test may be derived in a similar way to Example 3 of the 
phase known backcross (3.2.4), to test equality of male and female 
recombination frequencies.  

•  However the MLEs of !_m  and !_f are now harder to find. 

3.4  POWER  and INFORMATION 
3.4.1 POWER and SAMPLE SIZE 

•  If ! is the true value, the probability a null hypothesis H_0 is rejected is the 
power function of the test. 

•  For example, using the Normal approximation for a phase-known backcross  
(or any example where we count recombinants), the power is                       .  
P(T < t0 ; !)  =  P  ( (T - n !)/%(n ! (1- !)) < (t0 - n !)/%(n ! (1- !)) )               .                       
& '((t0 - n !)/%(n ! (1- !)) . 

•  But now (from 3.2.3), t0 = (n/2) + (%n/2)'^{-1}(() , so                                    .  
P(T < t0 ; !) & '(('^{-1}(() + %n (1-2 !))/ (2%(! (1- !)))). 

•  Note when ! =1/2 this is equal to (, the test type-1 error. 
•  It decreases over 0 " ! "  1/2.  Clearly, for a given sample size, linkage is 

more easily detected when ! is small.  i.e. the power is larger. 
•  Conversely, for given ! , one may determine the sample size n required for 

given power.  For example, if ! =0.1, what n is required for 90% power. 

•  For the phase-unknown backcross. the power and sample-size 
computations are exactly as for the phase-known case, with !*=2 ! (1- ! ) 
replacing !, and n now denoting the number of two-child families. 

3.4.2 Kullback-Leibler information 

•  The Kullback-Leibler (KL) information is a log-likelihood based measure 
appropriate for testing hypotheses (as opposed to Fisher Information which 
concerns estimation). 

•  For multinomial data in general, we can find the form of the KL information.  
Suppose there are c categories and suppose q is the true value of the cell 
probabilities qi, i=1,…,c, and q0 is some hypothesized value. 

•  Then #(q)  =  sum_{i=1}^c n_j log q_j. where here we use base-e logs. 
•  So for a sample size n,  K_n (q0; q)  =   E( #(q) – #(q0)  ; q )                                      

=   n sum_{i=1}^c qi ( log qi –  log (q0i))  = n sum_{i=1}^c qi log (qi/q0i). 
•  For a single observation,  K = K_1 (q0;  q) =   sum_{i=1}^c qi log (qi / q0i). 

•  In the case of linkage analysis data, qi = qi(!) and the null hypothesis is   
H0: !  = 1/2: q0i= qi(1/2). 

•  Evaluating the KL information for testing !=1/2, for the binomial (c=2) 
phase-known and (2-offspring) phase-unknown backcross experiments, and 
for the intercross experiment (c=4) we obtain the values for the information 
per offspring sampled shown on the next page. 



KL Information in linkage designs 

•  This measures information, per offspring sampled, for detecting linkage 
when ! is the true value.  As expected, the more ! differs from 1/2  the more 
information there is. 

•  Also each phase-known offspring contributes at least twice as much as in 
the phase-unknown case. When ! is close to 1/2, the phase-unknown two-
offspring design provides very little information. 

•  As expected, each intercross offspring contains more information than a 
backcross offspring.  But there is not twice as much information, as there 
would be if the meioses were fully observable. 

•  As ! ) 1/2, there is almost no additional information in doing an intercross 
design rather than a backcross. 

True !  0.0 0.1 0.2 0.3 0.4 0.5 

Backcross: 
phase known 

0.69 0.368 0.193 0.082 0.021 0 

Backcross: 
phase unknown 

0.35 0.111 0.033 0.006 0.0004 0 

Intercross 1.04 0.479 0.226 0.089 0.021 0 

3.4.3 Elods and sample size 

•  The Kullback-Leibler information for testing ! = 1/2 is the expected 
base-e lod score at the true value of the recombination frequency !. 

•  This, but base-10, is a measure very widely used in linkage analysis 
and known as the Elod. 

•  Note we expect the base-e lod score  to be approximately nK when 
n is large.  For our intercross data with n=200, we had !*= 0.12; in 
fact, the data were simulated at ! = 0.1. Then 200x 0.479 is about 
95, in good agreement with the (base-e) lod score value of 90 which 
we obtained (last page of 3.3.3).   

•  This also tells us that if we had realized that ! might be around 0.1, 
it was very wasteful to breed 200 mice.  When ! = 0.1, about 20 
mice are expected to give a lod score (base e) of more than 9; this is 
plenty to detect that ! * 1/2.  

•  Note again that we have used natural logarithms in these examples, 
contrary to standard practice in genetics. 


